Beispiel #1
0
 def undo(self):
     self.successful_actions -= 1
     self.img.delete()
     self.img = Image(self.prev_img.img, self.prev_img.array)
     self.reward = self.prev_reward
     self.distance = self.prev_distance
     self.undo_before_step = True
Beispiel #2
0
 def __init__(self, input_path, output_path, output_size, bg):
     src_img, img = initialize(src_path=input_path,
                               input_path=None,
                               size=output_size)
     self.src_img = Image(src_img)
     self.img = Image(img)
     self.viewer = None
     self.output_path = output_path
     color_to_fill = self.src_img.get_average_color(
     ) if bg == 'None' else hex_to_rgb(bg)
     self.img.fill_with(color_to_fill)
Beispiel #3
0
 def __init__(self, src_path, action_type, limit, output_size, diffs):
     self.src_path = src_path
     src_image, image = initialize_with_scaled_src(
         self.src_path + "/src.jpg", output_size)
     self.src_image = Image(src_image)
     self.image = Image(image)
     self.diffs = diffs
     if self.diffs:
         self.action_type_limited = True if action_type >= 0 else False
         if self.action_type_limited:
             self.action_type = action_type
         self.action_number_limited = True if limit >= 0 else False
         if self.action_number_limited:
             self.limit = limit
     self.out_path = None
     self.img_src_out_path = None
     self.abs_out_path = None
Beispiel #4
0
def generate_set(image_n, image_size, name):
    def initialize():
        X = np.zeros((image_n, image_size, image_size, 3))
        Y = np.zeros((image_n, 9))
        return X, Y

    def rand():
        return np.random.uniform(0., 1.), np.random.uniform(0., 1.), np.random.uniform(0., 1.), \
               np.random.uniform(0., 1.), np.random.uniform(0., 1.), np.random.uniform(0., 1.), \
               np.random.uniform(0., 1.), np.random.uniform(0., 1.), np.random.uniform(0., 1.)

    X, Y = initialize()

    image = Image(initializer.new_image(image_size, image_size))
    white_image_np = np.ones((image_size, image_size, 3))

    action = Environment.Action.LINE

    for i in tqdm.tqdm(range(image_n), "Generating %s set" % name):
        r, g, b, a, x1, y1, x2, y2, size = rand()
        image.perform_action(action, (r, g, b, a, x1, y1, x2, y2, size))
        array = image.array
        X[i] = (array / 255.) - white_image_np
        Y[i] = [r, g, b, a, x1, y1, x2, y2, size]
        image.clear()

    path = "./{}_{}.npy"
    np.save(path.format(name, "X"), X)
    np.save(path.format(name, "Y"), Y)
Beispiel #5
0
def generate_set(image_n, image_size, name, shape, without_rotation):
    def initialize():
        X = np.zeros((image_n, image_size, image_size, 3))
        Y = np.zeros((image_n, 9))
        return X, Y

    def rand():
        return np.random.uniform(0., 1.), np.random.uniform(0., 1.), np.random.uniform(0., 1.), \
               np.random.uniform(0., 1.), np.random.uniform(0., 1.), np.random.uniform(0., 1.), \
               np.random.uniform(0. + (1. / image_size), 1.), \
               np.random.uniform(0. + (1. / image_size), 1.), np.random.uniform(0., 1.)

    X, Y = initialize()

    image = Image(initializer.new_image(image_size, image_size))
    white_image_np = np.ones((image_size, image_size, 3))

    action = Environment.Action.ELLIPSE if shape == 'ellipse' else Environment.Action.RECTANGLE

    for i in tqdm.tqdm(range(image_n), "Generating %s set" % name):
        r, g, b, a, x, y, w, h, rotation = rand()
        w = min(w, 1 - x)
        h = min(h, 1 - y)
        rotation = 0.5 if without_rotation else rotation
        image.perform_action(action, (r, g, b, a, x, y, w, h, rotation))
        array = image.array
        X[i] = (array / 255.) - white_image_np
        Y[i] = [r, g, b, a, x, y, w, h, rotation]
        image.clear()

    path = "./{}_{}.npy"
    np.save(path.format(name, "X"), X)
    np.save(path.format(name, "Y"), Y)
Beispiel #6
0
 def __init__(self, src_path, acceptable_distance, input_path, actions,
              size):
     self.src_path = src_path
     src_img, img = initializer.initialize(src_path, input_path, size)
     self.src_img = Image(src_img)
     self.img = Image(img)
     self.prev_img = None
     self.acceptable_dist = acceptable_distance
     self.state = None
     self.reward = 0
     self.prev_reward = 0
     self.distance = sum(abs(self.src_img.array - self.img.array))
     self.prev_distance = 0
     self.done = False
     self.action_space = ToolSpace()
     self.viewer = None
     self.version_info = self.construct_version_info()
     self.out_path = None
     self.undo_before_step = False
     self.action = None
     self.args = None
     self.successful_actions = 0
     self.actions_before_success = 0
     self.actions = actions
Beispiel #7
0
class Environment(object):
    def __init__(self, input_path, output_path, output_size, bg):
        src_img, img = initialize(src_path=input_path,
                                  input_path=None,
                                  size=output_size)
        self.src_img = Image(src_img)
        self.img = Image(img)
        self.viewer = None
        self.output_path = output_path
        color_to_fill = self.src_img.get_average_color(
        ) if bg == 'None' else hex_to_rgb(bg)
        self.img.fill_with(color_to_fill)

    # todo: not working
    def render(self):
        if self.viewer is None:
            self.viewer = rendering.SimpleImageViewer()
        image = np.concatenate(
            (self.src_img.renderable(), self.img.renderable()), axis=1)
        self.viewer.img_show(image)

    def save(self):
        self.img.update_array()
        imsave(self.output_path, self.img.renderable())
def generate_set(image_n, image_size, name):
    def scale(x):
        return x / float(image_size)

    def initialize():
        X = np.zeros((image_n, image_size, image_size))
        Y = np.zeros((image_n, 9))
        return X, Y

    X, Y = initialize()

    image = Image(initializer.new_image(image_size, image_size))
    white_image_np = np.ones((image_size, image_size))

    for i in tqdm.tqdm(range(image_n), "Generating %s set" % name):
        square_size = np.random.randint(3, image_size)
        x_coor = np.random.randint(0, image_size - square_size)
        y_coor = np.random.randint(0, image_size - square_size)
        image.perform_action(
            RECTANGLE, (RED, GREEN, BLUE, ALPHA, scale(x_coor), scale(y_coor),
                        scale(square_size), scale(square_size), ROTATION))
        array = np.sum(image.array, axis=2) / 3
        X[i] = (array / 255.) - white_image_np
        # draw white rectangle to "reset" image
        image.perform_action_without_array_update(
            RECTANGLE, (1., 1., 1., ALPHA, scale(x_coor), scale(y_coor),
                        scale(square_size), scale(square_size), ROTATION))
        Y[i][0] = RED
        Y[i][1] = GREEN
        Y[i][2] = BLUE
        Y[i][3] = ALPHA
        Y[i][4] = scale(x_coor)
        Y[i][5] = scale(y_coor)
        Y[i][6] = scale(square_size)
        Y[i][7] = scale(square_size)
        Y[i][8] = ROTATION

    path = "./{}_{}.npy"
    np.save(path.format(name, "X"), X)
    np.save(path.format(name, "Y"), Y)
Beispiel #9
0
def plugin_main(name, size, r, g, b, a, x1, y1, x2, y2, x3, y3):
    image = Image(initializer.new_image(size, size))
    action = Environment.Action.TRIANGLE
    image.perform_action(action, (r, g, b, a, x1, y1, x2, y2, x3, y3))
    image.save("%s/%s" % (PATH, name))
Beispiel #10
0
class ImageGenerator(object):
    def __init__(self, src_path, action_type, limit, output_size, diffs):
        self.src_path = src_path
        src_image, image = initialize_with_scaled_src(
            self.src_path + "/src.jpg", output_size)
        self.src_image = Image(src_image)
        self.image = Image(image)
        self.diffs = diffs
        if self.diffs:
            self.action_type_limited = True if action_type >= 0 else False
            if self.action_type_limited:
                self.action_type = action_type
            self.action_number_limited = True if limit >= 0 else False
            if self.action_number_limited:
                self.limit = limit
        self.out_path = None
        self.img_src_out_path = None
        self.abs_out_path = None

    def setup_diffs_output(self):
        if self.diffs:
            image_number = self.src_path.split("/")[-2]
            image_dir = os.path.expandvars("$GIMP_PROJECT/out/diffs/%s" %
                                           image_number)
            if not os.path.exists(image_dir):
                os.mkdir(image_dir)
            self.out_path = image_dir

    def run(self):
        start = time.time()
        self.setup_diffs_output()
        actions = self.parse_actions()
        self.perform_actions_with_saving_data(actions)
        self.save_generated_image()
        end = time.time()
        print "Script executed in {} seconds".format(end - start)

    def save_generated_image(self):
        if not self.diffs:
            self.image.save(self.src_path + "/generated_image.jpg")

    def perform_actions_with_saving_data(self, actions):
        for index, (action_type, action_args) in enumerate(actions):
            if self.should_save(action_type):
                self.save(index, action_type, action_args)
            self.image.perform_action_without_array_update(
                action_type, action_args)

    def should_save(self, action_type):
        return self.diffs and (not self.action_type_limited
                               or action_type == self.action_type)

    def save(self, index, action_type, action_args):
        def get_path(x):
            return "{}/{}_{}.npy".format(self.out_path, x, index + 1)

        X = (self.src_image.array - self.image.get_updated_array()) / 255.
        np.save(get_path("X"), X)
        # Y without action_type for now
        Y = np.array(list(action_args))
        np.save(get_path("Y"), Y)

    def parse_actions(self):
        import glob
        path_to_actions = self.src_path + "/*.json"
        action_files = glob.glob(path_to_actions)
        if self.diffs and self.action_number_limited:
            action_files = [
                f for f in action_files if int(extract_number(f)) <= self.limit
            ]
        action_files.sort(key=natural_keys)

        actions = []

        for action_file in action_files:
            with open(action_file) as json_file:
                data = json.load(json_file)["action"]
                actions.append((data["actionNumber"], tuple(data["args"])))

        return actions
Beispiel #11
0
class Environment(object):
    def __init__(self, src_path, acceptable_distance, input_path, actions,
                 size):
        self.src_path = src_path
        src_img, img = initializer.initialize(src_path, input_path, size)
        self.src_img = Image(src_img)
        self.img = Image(img)
        self.prev_img = None
        self.acceptable_dist = acceptable_distance
        self.state = None
        self.reward = 0
        self.prev_reward = 0
        self.distance = sum(abs(self.src_img.array - self.img.array))
        self.prev_distance = 0
        self.done = False
        self.action_space = ToolSpace()
        self.viewer = None
        self.version_info = self.construct_version_info()
        self.out_path = None
        self.undo_before_step = False
        self.action = None
        self.args = None
        self.successful_actions = 0
        self.actions_before_success = 0
        self.actions = actions

    @timed
    def construct_version_info(self):
        additional_info = ""
        return "{}_{}_{}_{}_space_{}_{}".format(
            imprvs["eps"], imprvs["improvements_by_one_attempt"],
            imprvs["attempts"], reducer_rate, self.action_space.n,
            additional_info)

    @timed
    def reset(self):
        # self.__setup_output()
        return (self.src_img.array - self.img.array) / 255.

    @timed
    def setup_output(self):
        filename = str(os.path.basename(self.src_path).split(".")[0])
        image_dir = os.path.expandvars("$GIMP_PROJECT/out/drawing/%s" %
                                       filename)
        date = datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S")
        execution_dirname = date + "_" + self.version_info
        if not os.path.exists(image_dir):
            os.mkdir(image_dir)
        self.out_path = "%s/%s" % (image_dir, execution_dirname)
        os.mkdir(self.out_path)
        self.src_img.save(self.out_path + "/src.jpg")

    @timed
    def render(self):
        if self.viewer is None:
            self.viewer = rendering.SimpleImageViewer()
        image = self.get_concatenated_src_with_image(self.img)
        self.viewer.img_show(image)

    @timed
    def get_concatenated_src_with_image(self, image_to_concatenate):
        images_to_display = (self.src_img.renderable(),
                             image_to_concatenate.renderable())
        image = concatenate(images_to_display, axis=1)
        return image

    @timed
    def save(self, seconds_from_start, seconds_for_action):
        data = self.construct_json_data(seconds_from_start, seconds_for_action)
        action_string = "action_{}".format(self.successful_actions)
        with open(self.out_path + "/{}.json".format(action_string),
                  "w") as outfile:
            json.dump(data,
                      outfile,
                      sort_keys=True,
                      indent=4,
                      separators=(',', ': '))
        if self.successful_actions % 100 == 0:
            np.save(self.out_path + "/{}.npy".format(action_string),
                    self.img.array)
        self.actions_before_success = 0

    @timed
    def save_jpg(self, path):
        misc.imsave(path, self.get_concatenated_src_with_image(self.img))

    @timed
    def construct_json_data(self, seconds_from_start, seconds_for_action):
        return {
            "distanceBefore": self.prev_distance,
            "distanceAfter": self.distance,
            "reward": self.reward,
            "time": int(seconds_from_start * 1000),
            "timeString": formatter.format_time(seconds_from_start),
            "actionTime": int(seconds_for_action * 1000),
            "actionTimeString": formatter.format_time(seconds_for_action),
            "action": {
                "actionNumber": self.action,
                "actionString": self.action_space.subspace_name(self.action),
                "args": self.args,
            },
            "configuration": {
                "epsilon": imprvs["eps"],
                "improvementsByOneAttempt":
                imprvs["improvements_by_one_attempt"],
                "attempts": imprvs["attempts"]
            },
            "numberOfActionsBeforeSuccess": self.actions_before_success - 1
        }

    @timed
    def step(self, action, args):
        self.successful_actions += 1
        self.actions_before_success += 1
        if self.prev_img is not None and not self.undo_before_step:
            self.prev_img.delete()
        self.prev_img = self.img
        self.img = self.img.duplicate()
        self.prev_reward = self.reward
        self.prev_distance = self.distance
        self.img.perform_action(action, args)
        self.update_reward_and_distance()
        self.check_if_done()
        self.undo_before_step = False
        self.action = action
        self.args = args
        diff = (self.src_img.array - self.img.array) / 255.
        return self.reward, self.done, diff

    @timed
    def update_reward_and_distance(self):
        new_distance = np.sum(np.abs(self.src_img.array - self.img.array))
        self.reward = int(self.distance) - int(new_distance)
        self.distance = int(new_distance)

    @timed
    def check_if_done(self):
        self.done = self.distance <= self.acceptable_dist or self.successful_actions >= self.actions

    @timed
    def undo(self):
        self.successful_actions -= 1
        self.img.delete()
        self.img = Image(self.prev_img.img, self.prev_img.array)
        self.reward = self.prev_reward
        self.distance = self.prev_distance
        self.undo_before_step = True

    @timed
    def generate_image(self):
        pdb.python_fu_image_generator(self.out_path)
        results_dir = os.path.expandvars("$GIMP_PROJECT/results")
        if not os.path.exists(results_dir):
            os.mkdir(results_dir)
        filename = str(os.path.basename(self.src_path).split(".")[0])
        image_result_dir = results_dir + "/" + filename
        if not os.path.exists(image_result_dir):
            os.mkdir(image_result_dir)
        os.system("cp {} {}".format(self.out_path + "/generated_image.jpg",
                                    image_result_dir))
        os.system("cp {} {}".format(self.out_path + "/src.jpg",
                                    image_result_dir))

    class Action(object):
        ELLIPSE = 0
        RECTANGLE = 1
        LINE = 2
        TRIANGLE = 3
Beispiel #12
0
def plugin_main(name, size, r, g, b, a, x, y, w, h, rotation, shape):
    image = Image(initializer.new_image(size, size))
    action = Environment.Action.ELLIPSE if shape == 'ellipse' else Environment.Action.RECTANGLE
    image.perform_action(action, (r, g, b, a, x, y, w, h, rotation))
    image.save("%s/%s" % (PATH, name))
Beispiel #13
0
def generate_set(num_images, image_size, name, max_examples_per_part,
                 without_rotation):
    def initialize(num_examples):
        X = np.zeros((num_examples, image_size, image_size, 3))
        Y = np.zeros((num_examples, 4))
        return X, Y

    def save(X, Y, p):
        path = "./{}_{}_{}.npy"
        np.save(path.format(name, "X", p), X)
        np.save(path.format(name, "Y", p), Y)

    def generate_args(a):
        if a == 0 or a == 1:
            return generate_args_for_selection_shape()
        elif a == 2:
            return generate_args_for_line()
        else:
            return generate_args_for_triangle()

    def generate_args_for_selection_shape():
        def rand():
            return np.random.uniform(0., 1.), np.random.uniform(0., 1.), np.random.uniform(0., 1.), \
                   np.random.uniform(0., 1.), np.random.uniform(0., 1.), np.random.uniform(0., 1.), \
                   np.random.uniform(0. + (1. / image_size), 1.), \
                   np.random.uniform(0. + (1. / image_size), 1.), np.random.uniform(0., 1.)

        r, g, b, a, x, y, w, h, rotation = rand()
        w = min(w, 1 - x)
        h = min(h, 1 - y)
        rotation = 0.5 if without_rotation else rotation
        return r, g, b, a, x, y, w, h, rotation

    def generate_args_for_line():
        def rand():
            return np.random.uniform(0., 1.), np.random.uniform(0., 1.), np.random.uniform(0., 1.), \
                   np.random.uniform(0., 1.), np.random.uniform(0., 1.), np.random.uniform(0., 1.), \
                   np.random.uniform(0., 1.), np.random.uniform(0., 1.), np.random.uniform(0., 1.)

        return rand()

    def generate_args_for_triangle():
        def rand():
            return np.random.uniform(0., 1.), np.random.uniform(0., 1.), np.random.uniform(0., 1.), \
                   np.random.uniform(0., 1.), np.random.uniform(0., 1.), np.random.uniform(0., 1.), \
                   np.random.uniform(0., 1.), np.random.uniform(0., 1.), np.random.uniform(0., 1.), \
                   np.random.uniform(0., 1.)

        return rand()

    remaining_examples = num_images
    part = 1

    image = Image(initializer.new_image(image_size, image_size))
    white_image_np = np.ones((image_size, image_size, 3))

    while remaining_examples > 0:
        examples_in_current_part = min(remaining_examples,
                                       max_examples_per_part)
        X, Y = initialize(examples_in_current_part)
        for i in tqdm.tqdm(range(examples_in_current_part),
                           "Generating {} set, part {}".format(name, part)):
            action = np.random.randint(0, 4)
            args = generate_args(action)
            image.perform_action(action, args)
            array = image.array
            X[i] = (array / 255.) - white_image_np
            Y[i][action] = 1
            image.clear()

        save(X, Y, part)
        remaining_examples -= examples_in_current_part
        part += 1