Beispiel #1
0
def replay_task(replay_job: Job, training_initial_job: Job) -> list:
    """ The function create a replay task to ask the server to demo the arriving of events

        :param replay_job: job dictionary
        :param training_initial_job: job dictionary
        :return: List of requests
    """
    logger.error("Start replay task ID {}".format(replay_job.id))
    requests = list()
    try:
        replay_job.status = JobStatuses.RUNNING.value
        replay_job.error = ''
        replay_job.save()
        requests = replay_core(replay_job, training_initial_job)
        replay_job.status = JobStatuses.COMPLETED.value
        for r in requests:
            if r.status_code != status.HTTP_201_CREATED:
                replay_job.error += [r]
    except Exception as e:
        logger.error(e)
        replay_job.status = JobStatuses.ERROR.value
        replay_job.error += [str(e.__repr__())]
        raise e
    finally:
        replay_job.save()
        publish(replay_job)
        return requests
Beispiel #2
0
def runtime_task(job: Job):
    """ The function create a runtime task to ask a single prediction to the server

        :param job: job dictionary
    """
    logger.info("Start runtime task ID {}".format(job.id))
    try:
        job.status = JobStatuses.RUNNING.value
        job.save()
        result = runtime_calculate(job)
        job.results = {'result': str(result)}
        job.status = JobStatuses.COMPLETED.value
        job.error = ''
    except Exception as e:
        logger.error(e)
        job.status = JobStatuses.ERROR.value
        job.error = str(e.__repr__())
        raise e
    finally:
        job.save()
        publish(job)
Beispiel #3
0
def replay_prediction_task(replay_prediction_job: Job, training_initial_job: Job, log: Log):
    """ The function create a replat prediction task to ask a single prediction to the server for a portion of a trace

        :param replay_prediction_job: job dictionary
        :param training_initial_job: job dictionary
        :param log: job dictionary
    """
    logger.info("Start replay_prediction task ID {}".format(replay_prediction_job.id))
    try:
        replay_prediction_job.status = JobStatuses.RUNNING.value
        replay_prediction_job.save()
        max_len = max(len(trace) for trace in log)
        if replay_prediction_job.encoding.prefix_length != max_len:
            prediction_job = create_prediction_job(training_initial_job, max_len)
            prediction_task(prediction_job.id)
            prediction_job.refresh_from_db()
            new_replay_prediction_job = duplicate_orm_row(prediction_job)
            new_replay_prediction_job.split = Split.objects.filter(pk=replay_prediction_job.split.id)[0]
            new_replay_prediction_job.type = JobTypes.REPLAY_PREDICT.value
            new_replay_prediction_job.parent_job = replay_prediction_job.parent_job
            new_replay_prediction_job.status = JobStatuses.CREATED.value
            replay_prediction_task(new_replay_prediction_job, prediction_job, log)
            return
        result_dict, events_for_trace = replay_prediction_calculate(replay_prediction_job, log)
        replay_prediction_job.results = dict(result_dict)
        replay_prediction_job.event_number = dict(events_for_trace)
        replay_prediction_job.status = JobStatuses.COMPLETED.value
        replay_prediction_job.error = ''
    except Exception as e:
        logger.error(e)
        replay_prediction_job.status = JobStatuses.ERROR.value
        replay_prediction_job.error = str(e.__repr__())
        raise e
    finally:
        replay_prediction_job.save()
        publish(replay_prediction_job)
Beispiel #4
0
def replay_prediction_task(replay_prediction_job: Job,
                           training_initial_job: Job, log: Log):
    """ The function create a replat prediction task to ask a single prediction to the server for a portion of a trace

        :param replay_prediction_job: job dictionary
        :param training_initial_job: job dictionary
        :param log: job dictionary
    """
    logger.info("Start replay_prediction task ID {}".format(
        replay_prediction_job.id))
    try:
        replay_prediction_job.status = JobStatuses.RUNNING.value
        replay_prediction_job.save()
        max_len = max(len(trace) for trace in log)
        if replay_prediction_job.encoding.prefix_length != max_len:
            prediction_job = create_prediction_job(training_initial_job,
                                                   max_len)
            prediction_task(prediction_job.id)
            prediction_job.refresh_from_db()
            # new_replay_prediction_job = duplicate_orm_row(prediction_job)  #todo: replace with simple CREATE
            new_replay_prediction_job = Job.objects.create(
                created_date=prediction_job.created_date,
                modified_date=prediction_job.modified_date,
                error=prediction_job.error,
                status=prediction_job.status,
                type=prediction_job.type,
                create_models=prediction_job.create_models,
                case_id=prediction_job.case_id,
                event_number=prediction_job.event_number,
                gold_value=prediction_job.gold_value,
                results=prediction_job.results,
                parent_job=prediction_job.parent_job,
                split=prediction_job.split,
                encoding=prediction_job.encoding,
                labelling=prediction_job.labelling,
                clustering=prediction_job.clustering,
                predictive_model=prediction_job.predictive_model,
                evaluation=prediction_job.evaluation,
                hyperparameter_optimizer=prediction_job.
                hyperparameter_optimizer,
                incremental_train=prediction_job.incremental_train)
            new_replay_prediction_job.split = Split.objects.filter(
                pk=replay_prediction_job.split.id)[0]
            new_replay_prediction_job.type = JobTypes.REPLAY_PREDICT.value
            new_replay_prediction_job.parent_job = replay_prediction_job.parent_job
            new_replay_prediction_job.status = JobStatuses.CREATED.value
            replay_prediction_task(new_replay_prediction_job, prediction_job,
                                   log)
            return
        result_dict, events_for_trace = replay_prediction_calculate(
            replay_prediction_job, log)
        replay_prediction_job.results = dict(result_dict)
        replay_prediction_job.event_number = dict(events_for_trace)
        replay_prediction_job.status = JobStatuses.COMPLETED.value
        replay_prediction_job.error = ''
    except Exception as e:
        logger.error(e)
        replay_prediction_job.status = JobStatuses.ERROR.value
        replay_prediction_job.error = str(e.__repr__())
        raise e
    finally:
        replay_prediction_job.save()
        publish(replay_prediction_job)