Beispiel #1
0
def test_x_parameter_with_dimension_different_from_2_should_raise_exception_when_predicting_proba(
):
    X = np.array([[1, 1], [1000, 1000], [2, 2], [980, 1099], [3, 3],
                  [1100, 1010]])
    y = np.array([1, 2, 1, 2, 1, 2])
    X_test = np.array([1, 5, 999, 999, 15, 15, 1500, 1500, 50, 50])

    knn = KNN()
    knn.fit(X, y)

    with pytest.raises(InvalidDimension):
        knn.predict_proba(X_test)
Beispiel #2
0
def test_x_parameter_with_different_number_of_columns_from_training_x_should_raise_exception_when_predicting_proba(
):
    X = np.array([[1, 1], [1000, 1000], [2, 2], [980, 1099], [3, 3],
                  [1100, 1010]])
    y = np.array([1, 2, 1, 2, 1, 2])
    X_test = np.array([[1, 5, 5], [999, 999, 999], [15, 15, 15],
                       [1500, 1500, 1500], [50, 50, 50]])

    knn = KNN()
    knn.fit(X, y)

    with pytest.raises(IncompatibleShape):
        knn.predict_proba(X_test)
Beispiel #3
0
def test_knn_predict_probabilities_comparing_with_sklearn_knn():
    digits = datasets.load_digits()
    metric = 'euclidean'
    k = 11
    X = digits.data
    y = digits.target
    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.2,
                                                        random_state=42)

    sk_knn = KNeighborsClassifier(n_neighbors=k, metric=metric)
    sk_knn.fit(X_train, y_train)
    sk_result = sk_knn.predict_proba(X_test)

    model = KNN(k=k, metric=metric)
    model.fit(X_train, y_train)
    result = model.predict_proba(X_test)

    assert np.all(result == sk_result)