Beispiel #1
0
 def testOnes_inv(self):
     A1 = [np.array([[1., 1.], [1., 1.]]), np.array([[1., 1.], [1., 1.]])]
     x1 = np.array([1., 1., 1., 1.])
     y1 = np.array([4, 4, 4, 4])
     kp = KronProd(invert(A1))
     x = kp.dot(y1)
     np.testing.assert_almost_equal(x, x1, decimal=7, verbose=True)
Beispiel #2
0
 def testBig_inv(self):
     n = 2  # number of factors
     p = 100  # dimension of factor
     r_As = [ortho_group.rvs(dim=p) for i in range(n)]
     As = [m / m.sum(axis=1)[:, None] for m in r_As]  # normalize each row
     y = np.random.rand(p**n)
     kp = KronProd(invert(As))
     x = kp.dot(y)
     print("efficient calc: ", x)
Beispiel #3
0
 def testBig_pInv(self):
     n = 2  # number of factors
     p = 100  # dimension of factor
     r_As = [np.random.rand(p, p) for i in range(n)]
     #Make first and second row the same so that way it becomes a non-invertible matrix
     for A in r_As:
         A[1, :] = A[0, :]
     As = [m / m.sum(axis=1)[:, None] for m in r_As]  # normalize each row
     x = np.random.rand(p**n)
     kp = KronProd(invert(As))
     Y = kp.dot(x)
     print("efficient calc: ", Y)
Beispiel #4
0
    def testRandom_inv(self):
        n = 5  # number of factors
        p = 5  # dimension of factor
        r_As = [ortho_group.rvs(dim=p) for i in range(n)]
        As = [m / m.sum(axis=1)[:, None] for m in r_As]  # normalize each row
        y = np.random.rand(p**n)

        big_A = reduce(np.kron, As)
        big_x = np.linalg.solve(big_A, y)
        print("full calc: ", big_x)

        kp = KronProd(invert(As))
        x = kp.dot(y)
        print("efficient calc: ", x)

        np.testing.assert_almost_equal(x, big_x, decimal=7, verbose=True)
Beispiel #5
0
 def testInts_pInv(self):
     A1 = [ np.array([[1.0, 0.0], [0.0,0.0]]),
                 np.array([[1.,1.], [0.,0.]])]
     y1 = np.array([1.,2.,3.,4.])
     A1_inv = []
     for a in A1:
         A1_inv.append(np.linalg.pinv(a))
     big_A = reduce(np.kron, A1_inv)
     big_x = big_A.dot(y1)
     print("FOO")
     print("full calc: ",big_x)
     kp = KronProd(invert(A1))
     x = kp.dot(y1)
     print("efficient calc: ", x)
     print("BAR")
     self.assertSequenceEqual(list(x), list(big_x))
Beispiel #6
0
 def testFail(self):
     #For some reason this breaks the property of kron product - (A_1 kron A_2)^+ = A_1^+ kron A_2^+
     #The equivalent test for this is testRandom_pInv, but the reduce is performed after pinv. If it isn't then we get this error.
     #This error didn't seem to happen for n=p=3 or 2 but does occur sometimes when n=p=4 and somewhat frequently when n=p=5.
     n = 4
     p = 4
     As = As_fail
     y = Y_fail
     big_A = reduce(np.kron, As)
     big_A_inv = np.linalg.pinv(big_A)
     big_x = big_A_inv.dot(y)
     kp = KronProd(invert(As))
     x = kp.dot(y)
     if (np.allclose(x, big_x) == False):
         return
     else:
         self.fail("No equivalent!")
Beispiel #7
0
    def testRandom_pInv(self):
        n = 5  # number of factors
        p = 5  # dimension of factor
        r_As = [ortho_group.rvs(dim=p) for i in range(n)]
        #Make first and second row the same so that way it becomes a non-invertible matrix
        for A in r_As:
            A[1, :] = A[0, :]
        As = [m / m.sum(axis=1)[:, None] for m in r_As]  # normalize each row
        y = np.random.rand(p**n)
        As_inv = []
        for a in As:
            As_inv.append(np.linalg.pinv(a))

        big_A = reduce(np.kron, As_inv)
        big_x = big_A.dot(y)
        print("[test_kron_inv - testRandom_pInv] full calc: ", big_x)

        kp = KronProd(invert(As))
        x = kp.dot(y)
        print("[test_kron_inv - testRandom_pInv] efficient calc: ", x)

        np.testing.assert_almost_equal(big_x, x, decimal=7, verbose=True)