dist = a_AS_dist[i]
    dist = dist[dist>0]
    mag = a_MS_mag[i]

    # plot the histogram
    HD_bins = np.arange(np.amin(np.log10(dist)), np.amax(np.log10(dist)), dPar['HD_binsize'])
    HD_dist, HD_bins = np.histogram(np.log10(dist), HD_bins)
    HD_bins = 10**HD_bins
    HD_dist, HD_bins = np.array(list(zip(*zip(HD_dist, HD_bins))))
    aBinSize = [bin*10**dPar['HD_binsize'] - bin for bin in HD_bins]
    HD_dist /= aBinSize
    HD_dist /= len(dist)
    ax.loglog(HD_bins[HD_dist>0], HD_dist[HD_dist>0], '-',c=cols[i], mfc = 'none', mew = .2, label='Histogram')

    # plot the rate
    HD_bins, HD_rate = seis_utils.eqRate(dist, 24)
    HD_rate /= len(dist)

    #ax.loglog(HD_bins, HD_rate, 'r-',c=cols[i], lw=1,  label='<m>=%.2f' % a_MS_mag[i])##TODO: nullify this line

    # plot the smoothed rate
    HD_bin_s, HD_rate_smoothed = seis_utils.eqlgRate(np.log10(dist),65)
    HD_bin_s, HD_rate_smoothed=HD_bin_s[HD_rate_smoothed > 0], HD_rate_smoothed[HD_rate_smoothed > 0]
    HD_rate_smoothed = scipy.signal.savgol_filter(HD_rate_smoothed,3,1)
    ##ax.loglog(HD_bin_s[HD_rate_smoothed>0],HD_rate_smoothed[HD_rate_smoothed>0],\
    ##          'b-', c=cols[i],lw=1.5,  label='<m>=%.2f'% a_MS_mag[i]) ##TODO: use this line

    """ 
    # plot Emily's fit
    L = HD_bins[np.argmax(HD_dist)]
    sel = HD_bins >= L
Beispiel #2
0
#C# create time vector --> use obspy UTCDateTime or mx.DateTime
a_t_decYr = np.zeros(m_EvInRmax[0].shape[0])
a_t_decYr2 = np.zeros(m_EvInRmax[0].shape[0])
for i in range(m_EvInRmax[0].shape[0]):
    a_t_decYr[i] = seis_utils.dateTime2decYr([
        m_EvInRmax[0, i], m_EvInRmax[1, i], m_EvInRmax[2, i], m_EvInRmax[3, i],
        m_EvInRmax[4, i], m_EvInRmax[5, i]
    ])

#==================================3================================================
#                         power-law fitting (AS decay rate)
#===================================================================================
# subtract t MS from aftershock times - new vector has only AS with time relative to MS in days
a_tAS_day = (a_t_decYr[i_MS_ID + 1::] - a_t_decYr[i_MS_ID]) * 365.25
# compute rates
at_bin_AS, aN_bin_AS = seis_utils.eqRate(a_tAS_day, dPar['k'])
####A##### power law fit - least squares
sel_t = np.logical_and(at_bin_AS >= dPar['tmin'], at_bin_AS <= dPar['tmax'])
# only events within tmin and tmax, do log-transformation
f_p_LS, f_K_LS, __, __, __ = scipy.stats.linregress(np.log10(at_bin_AS[sel_t]),
                                                    np.log10(aN_bin_AS[sel_t]))
f_K_LS = 10**f_K_LS
print('Omori p-value (least-squares): ', round(f_p_LS, 1), 'K',
      round(f_K_LS, 1))
####A##### power law fit - least squares
# for dN/dt = K*t**(-p); remember that we're solving a problem analogous to:
#                         y_hat = alpha * t**beta, with alpha = 10**a and beta = b
####B##### power law fit - maximum likelihood
dOm = omori.fit_omoriMLE(a_tAS_day[a_tAS_day > 0],
                         bounds=dPar['a_limit'],
                         par0=dPar['a_par0'],
a_MS_mag = asSets['a_MS_mag']
a_AS_dist = asSets['a_AS_dist']

i = 0
for f_MSmag, dist in zip(a_MS_mag, a_AS_dist):

    # ==================================3=============================================
    #                          plot distance decay
    # ================================================================================

    name = '<m>=%.2f' % f_MSmag
    fig1 = plt.figure(1)
    ax1 = plt.subplot(111)
    ax1.set_title(name)
    for k in [20, 50, 100, 200]:
        a_r_bin, a_dens = seis_utils.eqRate(dist, k)
        ax1.loglog(a_r_bin, a_dens, 'o', label=str(k), mew=0)
    #--------- plot -1.4 slope from felzer and Brodsky for comparison-----------------
    gamma = -1.4
    selPeak = a_dens == a_dens.max()
    preFac = a_dens[selPeak] / (a_r_bin[selPeak]**gamma)
    ax1.plot(a_r_bin, preFac * a_r_bin**gamma, 'w-', lw=2.5)
    ax1.plot(a_r_bin,
             preFac * a_r_bin**gamma,
             'k--',
             label='Dens ~ r ^ %.1f' % (gamma))
    # ==================================4=============================================
    #                       highlight mainshock rupture dimension
    # ================================================================================
    l0, sigma = 0.01, 0.44
    f_L1 = l0 * 10**(sigma * f_MSmag)  # Hainzl , Moradpour et al.
    catChild.copy(eqCatMc)
    catParent.copy(eqCatMc)
    # catChild, catPar = create_parent_child_cat( projCat, dNND)
    catChild.selEventsFromID(dNND['aEqID_c'], repeats=True)
    catParent.selEventsFromID(dNND['aEqID_p'], repeats=True)
    print('size of parent catalog', catParent.size(), 'size of offspring cat',
          catChild.size())
    ## l
    dsigma = 5e6
    Mw = catParent.data['Mag']
    M0 = 10**(1.5 * (Mw + 6.03))
    l = 0.001 * (7 / 16 * M0 / dsigma)**(1 / 3)
    ## hd
    HD = dNND['aHD']
    ## Rl
    aRl = HD / l
    print("haversine distance:", HD)
    print("rupture dimension", l)
    ###histogram
    aBins = np.arange(0, 30, dPar['eta_binsize'])
    aHist, aBins = np.histogram(aRl, aBins)
    aHist, aBins = np.array(list(
        zip(*zip(aHist, aBins))))  # cut to same length
    aRate_bin, aRate = seis_utils.eqRate(aRl, k)
    aHist /= dPar['eta_binsize']
    # =================================4==============================================
    #                          plot histogram
    # ================================================================================
    #myplot.plot_rate_pd(aBins, aHist, aRate_bin, aRate,curr_Mc,'a_hs',dPar['eta_binsize'])
    myplot.plot_loglog(aBins, aHist, aRate_bin, aRate, curr_Mc, 'b_hs', k)
        'q': 0.35, 'd': 1.2, 'gamma': 0.6,
        }

# =================================1==============================================
#                            load catalog and select
# ================================================================================
eqcat = EqCat()

dCluster = data_utils.loadmat(input_file)
a_MS_mag = dCluster['a_MS_mag']
a_AS_dist = dCluster['a_AS_dist']
a_AS_Rm = np.zeros(len(a_MS_mag))  # maxima of distance distribution

# find the maxima of each set
for i, dist in enumerate(a_AS_dist):
    aRateBin_HD, aRate_HD = seis_utils.eqRate(dist, 2 * int(len(dist) / 30))  # ,minK=70
    aRate_HD /= len(dist)
    sel = aRateBin_HD > 0.1
    aRateBin_HD = aRateBin_HD[sel]
    aRate_HD = aRate_HD[sel]
    iRm = np.argmax(aRate_HD)
    a_AS_Rm[i] = aRateBin_HD[iRm]

# =================================3==============================================
#                            fix single power law
# ================================================================================
print(a_AS_Rm[-1])
sigma, lgC, __, __, __ = scipy.stats.linregress(a_MS_mag, np.log10(a_AS_Rm))
C = 10 ** lgC  # unit: km--> m
print("C:%.5f, sigma:%.2f" % (C, sigma))
 dsigma = 5e6
 Mw = catParent.data['Mag']
 M0 = 10**(1.5 * (Mw + 6.03))
 l = 0.001 * (7 / 16 * M0 / dsigma)**(1 / 3)
 ## hd
 HD = dNND['aHD']
 ## Rl
 aRl = HD / l
 #print("haversine distance:", HD)
 #print("rupture dimension", l)
 ###histogram
 aBins = np.arange(0, 30, dPar['eta_binsize'])
 aHist, aBins = np.histogram(aRl, aBins)
 aHist, aBins = np.array(list(
     zip(*zip(aHist, aBins))))  # cut to same length
 aRate_bin, aRate = seis_utils.eqRate(aRl, k)
 aHist /= dPar['eta_binsize']
 # ================================================================================
 #                       bigger parent event pairs
 # ================================================================================
 # select event pairs with parent event larger than M_pt
 sel = catParent.data['Mag'] >= dPar['M_pt']
 catChild.selEventsFromID(dNND['aEqID_c'][sel], repeats=True)
 catParent.selEventsFromID(dNND['aEqID_p'][sel], repeats=True)
 print('after::: size of parent catalog', catParent.size(),
       'size of offspring cat', catChild.size())
 ## l
 Mw1 = catParent.data['Mag']
 M01 = 10**(1.5 * (Mw1 + 6.03))
 l1 = 0.001 * (7 / 16 * M01 / dsigma)**(1 / 3)
 ## hd
    # ================================================================================
    # select only the clustering event pairs
    sel_cl = np.log10(dNND['aNND']) <= -5  #-4.7
    # HD
    HD = dNND['aHD'][sel_cl]
    print('catalog size: ', len(HD))

    # ==================================3=============================================
    #                          plot distance decay
    # ================================================================================

    fig1 = plt.figure(1)
    ax1 = plt.subplot(111)
    ax1.set_title(name)
    for k in [20, 50, 100, 200]:
        a_r_bin, a_dens = seis_utils.eqRate(dNND['aHD'], k)
        ax1.loglog(a_r_bin, a_dens, 'o', label=str(k), mew=0)
    #--------- plot -1.4 slope from felzer and Brodsky for comparison-----------------
    gamma = -1.4
    selPeak = a_dens == a_dens.max()
    preFac = a_dens[selPeak] / (a_r_bin[selPeak]**gamma)
    ax1.plot(a_r_bin, preFac * a_r_bin**gamma, 'w-', lw=2.5)
    ax1.plot(a_r_bin,
             preFac * a_r_bin**gamma,
             'k--',
             label='Dens ~ r ^ %.1f' % (gamma))
    # ==================================4=============================================
    #                       highlight mainshock rupture dimension
    # ================================================================================
    # find MS magnitude
    print(eqCat.data.keys(), asCat.data.keys())