Beispiel #1
0
def ssd_eval(dataset_path, ckpt_path, anno_json):
    """SSD evaluation."""
    batch_size = 1
    ds = create_ssd_dataset(dataset_path,
                            batch_size=batch_size,
                            repeat_num=1,
                            is_training=False,
                            use_multiprocessing=False)
    if config.model == "ssd300":
        net = SSD300(ssd_mobilenet_v2(), config, is_training=False)
    elif config.model == "ssd_vgg16":
        net = ssd_vgg16(config=config)
    elif config.model == "ssd_mobilenet_v1_fpn":
        net = ssd_mobilenet_v1_fpn(config=config)
    elif config.model == "ssd_resnet50_fpn":
        net = ssd_resnet50_fpn(config=config)
    else:
        raise ValueError(f'config.model: {config.model} is not supported')
    net = SsdInferWithDecoder(net, Tensor(default_boxes), config)

    print("Load Checkpoint!")
    param_dict = load_checkpoint(ckpt_path)
    net.init_parameters_data()
    load_param_into_net(net, param_dict)

    net.set_train(False)
    total = ds.get_dataset_size() * batch_size
    print("\n========================================\n")
    print("total images num: ", total)
    print("Processing, please wait a moment.")
    eval_param_dict = {"net": net, "dataset": ds, "anno_json": anno_json}
    mAP = apply_eval(eval_param_dict)
    print("\n========================================\n")
    print(f"mAP: {mAP}")
Beispiel #2
0
def ssd_model_build(args_opt):
    if config.model == "ssd300":
        backbone = ssd_mobilenet_v2()
        ssd = SSD300(backbone=backbone, config=config)
        init_net_param(ssd)
        if args_opt.freeze_layer == "backbone":
            for param in backbone.feature_1.trainable_params():
                param.requires_grad = False
    elif config.model == "ssd_mobilenet_v1_fpn":
        ssd = ssd_mobilenet_v1_fpn(config=config)
        init_net_param(ssd)
        if config.feature_extractor_base_param != "":
            param_dict = load_checkpoint(config.feature_extractor_base_param)
            for x in list(param_dict.keys()):
                param_dict["network.feature_extractor.mobilenet_v1." + x] = param_dict[x]
                del param_dict[x]
            load_param_into_net(ssd.feature_extractor.mobilenet_v1.network, param_dict)
    elif config.model == "ssd_resnet50_fpn":
        ssd = ssd_resnet50_fpn(config=config)
        init_net_param(ssd)
        if config.feature_extractor_base_param != "":
            param_dict = load_checkpoint(config.feature_extractor_base_param)
            for x in list(param_dict.keys()):
                param_dict["network.feature_extractor.resnet." + x] = param_dict[x]
                del param_dict[x]
            load_param_into_net(ssd.feature_extractor.resnet, param_dict)
    else:
        raise ValueError(f'config.model: {config.model} is not supported')
    return ssd
Beispiel #3
0
def ssd_eval(dataset_path, ckpt_path, anno_json):
    """SSD evaluation."""
    batch_size = 1
    ds = create_ssd_dataset(dataset_path,
                            batch_size=batch_size,
                            repeat_num=1,
                            is_training=False,
                            use_multiprocessing=False)
    if config.model == "ssd300":
        net = SSD300(ssd_mobilenet_v2(), config, is_training=False)
    elif config.model == "ssd_vgg16":
        net = ssd_vgg16(config=config)
    elif config.model == "ssd_mobilenet_v1_fpn":
        net = ssd_mobilenet_v1_fpn(config=config)
    elif config.model == "ssd_resnet50_fpn":
        net = ssd_resnet50_fpn(config=config)
    else:
        raise ValueError(f'config.model: {config.model} is not supported')
    net = SsdInferWithDecoder(net, Tensor(default_boxes), config)

    print("Load Checkpoint!")
    param_dict = load_checkpoint(ckpt_path)
    net.init_parameters_data()
    load_param_into_net(net, param_dict)

    net.set_train(False)
    i = batch_size
    total = ds.get_dataset_size() * batch_size
    start = time.time()
    pred_data = []
    print("\n========================================\n")
    print("total images num: ", total)
    print("Processing, please wait a moment.")
    for data in ds.create_dict_iterator(output_numpy=True, num_epochs=1):
        img_id = data['img_id']
        img_np = data['image']
        image_shape = data['image_shape']

        output = net(Tensor(img_np))
        for batch_idx in range(img_np.shape[0]):
            pred_data.append({
                "boxes": output[0].asnumpy()[batch_idx],
                "box_scores": output[1].asnumpy()[batch_idx],
                "img_id": int(np.squeeze(img_id[batch_idx])),
                "image_shape": image_shape[batch_idx]
            })
        percent = round(i / total * 100., 2)

        print(f'    {str(percent)} [{i}/{total}]', end='\r')
        i += batch_size
    cost_time = int((time.time() - start) * 1000)
    print(f'    100% [{total}/{total}] cost {cost_time} ms')
    mAP = metrics(pred_data, anno_json)
    print("\n========================================\n")
    print(f"mAP: {mAP}")
Beispiel #4
0
parser.add_argument('--file_format', type=str, choices=["AIR", "MINDIR"], default='AIR', help='file format')
parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
                    help="device target")
args = parser.parse_args()

context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
if args.device_target == "Ascend":
    context.set_context(device_id=args.device_id)

if __name__ == '__main__':
    if config.model == "ssd300":
        net = SSD300(ssd_mobilenet_v2(), config, is_training=False)
    elif config.model == "ssd_vgg16":
        net = ssd_vgg16(config=config)
    elif config.model == "ssd_mobilenet_v1_fpn":
        net = ssd_mobilenet_v1_fpn(config=config)
    elif config.model == "ssd_resnet50_fpn":
        net = ssd_resnet50_fpn(config=config)
    else:
        raise ValueError(f'config.model: {config.model} is not supported')
    net = SsdInferWithDecoder(net, Tensor(default_boxes), config)

    param_dict = load_checkpoint(args.ckpt_file)
    net.init_parameters_data()
    load_param_into_net(net, param_dict)
    net.set_train(False)

    input_shp = [args.batch_size, 3] + config.img_shape
    input_array = Tensor(np.random.uniform(-1.0, 1.0, size=input_shp), mindspore.float32)
    export(net, input_array, file_name=args.file_name, file_format=args.file_format)