def __init__(self, model_path): self.model = bodypose_model() if torch.cuda.is_available(): self.model = self.model.cuda() model_dict = util.transfer(self.model, torch.load(model_path)) self.model.load_state_dict(model_dict) self.model.eval()
def __init__(self, model_path, add_model_path, add=True): self.model = bodypose_model() if torch.cuda.is_available(): self.model = self.model.cuda() model_dict = util.transfer(self.model, torch.load(model_path)) self.model.load_state_dict(model_dict) self.model.eval() if add: self.add_model = add_model() if torch.cuda.is_available(): self.add_model = self.add_model.cuda() add_model_dict = util.add_transfer( self.add_model, torch.load( add_model_path)) #, map_location=torch.device('cpu'))) self.add_model.load_state_dict(add_model_dict) # self.add_model.load_state_dict(torch.load(add_model_path)) self.add_model.eval()
inWidth = 368 inHeight = 368 thr = 0.1 import torch from src import util torchmodelfile = 'model/body_pose_model.pth' from src.model import bodypose_model torchnet = bodypose_model() if torch.cuda.is_available(): torchmodel = torchnet.cuda() else: torchmodel = torchnet.cpu() model_dict = util.transfer(torchmodel, torch.load(torchmodelfile)) torchmodel.load_state_dict(model_dict) torchmodel.eval() frame = cv.imread("images/demo.jpg") frameWidth = frame.shape[1] frameHeight = frame.shape[0] stride = 8 padValue = 128 #imageToTest = cv.resize(frame, (0, 0), fx=368, fy=368, interpolation=cv.INTER_CUBIC) imageToTest = cv.resize(frame, (368, 368)) imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue)