Beispiel #1
0
def val(crnn, data_loader, criterion, converter, device, max_iter=100):
    print('Start val')

    crnn.eval()
    val_iter = iter(data_loader)

    n_correct = 0
    loss_avg = utils.averager()

    max_iter = min(max_iter, len(data_loader))
    for _ in range(max_iter):
        data = val_iter.next()
        cpu_images, text, length, cpu_texts = data
        image = cpu_images.to(device)
        batch_size = cpu_images.size(0)

        with torch.no_grad():
            preds = crnn(image)
        preds_size = torch.IntTensor([preds.size(0)] * batch_size)
        cost = criterion(preds, text, preds_size, length)
        loss_avg.add(cost)

        _, preds = preds.max(2)
        preds = preds.transpose(1, 0).contiguous().view(-1)
        sim_preds = converter.decode(preds.data, preds_size.data, raw=False)
        for pred, target in zip(sim_preds, cpu_texts):
            if pred == target.lower():
                n_correct += 1

    raw_preds = converter.decode(preds.data, preds_size.data, raw=True)[:opt.n_test_disp]
    for raw_pred, pred, gt in zip(raw_preds, sim_preds, cpu_texts):
        print('%-20s => %-20s, gt: %-20s' % (raw_pred, pred, gt))

    accuracy = n_correct / float(max_iter * opt.batchsize)
    print('Test loss: %f, accuray: %.2f%%' % (loss_avg.val(), accuracy * 100))
Beispiel #2
0
def val(net, dataset, criterion, max_iter=100):
    print('Start val')

    for p in crnn.parameters():
        p.requires_grad = False

    net.eval()
    data_loader = torch.utils.data.DataLoader(dataset,
                                              shuffle=True,
                                              batch_size=opt.batchSize,
                                              num_workers=int(opt.workers))
    val_iter = iter(data_loader)

    i = 0
    n_correct = 0
    loss_avg = utils.averager()

    max_iter = min(max_iter, len(data_loader))
    for i in range(max_iter):
        data = val_iter.next()
        i += 1
        cpu_images, cpu_texts = data
        batch_size = cpu_images.size(0)
        utils.loadData(image, cpu_images)
        t, l = converter.encode(cpu_texts)
        utils.loadData(text, t)
        utils.loadData(length, l)

        preds = crnn(image)
        preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))
        cost = criterion(preds, text, preds_size, length) / batch_size
        loss_avg.add(cost)

        _, preds = preds.max(2)
        preds = preds.squeeze(2)
        preds = preds.transpose(1, 0).contiguous().view(-1)
        sim_preds = converter.decode(preds.data, preds_size.data, raw=False)
        for pred, target in zip(sim_preds, cpu_texts):
            if pred == target.lower():
                n_correct += 1

    raw_preds = converter.decode(preds.data, preds_size.data,
                                 raw=True)[:opt.n_test_disp]
    for raw_pred, pred, gt in zip(raw_preds, sim_preds, cpu_texts):
        print('%-20s => %-20s, gt: %-20s' % (raw_pred, pred, gt))

    accuracy = n_correct / float(max_iter * opt.batchSize)
    print('Test loss: %f, accuray: %f' % (loss_avg.val(), accuracy))
Beispiel #3
0
def main(opts):

  ## 1. 初始化模型
  nclass = len(alphabet) + 1            # 训练ICDAR2015
  model_name = 'E2E-MLT'
  net = ModelResNetSep2(attention=True, nclass=nclass)
  print("Using {0}".format(model_name))

  learning_rate = opts.base_lr
  # optimizer = torch.optim.Adam(net.parameters(), lr=opts.base_lr, weight_decay=weight_decay)
  optimizer = optim.Adam(net.parameters(), lr=opts.base_lr, betas=(0.5, 0.999))
  step_start = 0

  ### //预训练模型初始化,第一种:只修改conv11的维度 
  model_dict = net.state_dict()
  if os.path.exists(opts.model):
      print('loading pretrained model from %s' % opts.model)
      pretrained_model = ModelResNetSep2(attention=True, nclass=7500)                 # pretrained model from:https://github.com/MichalBusta/E2E-MLT
      pretrained_model.load_state_dict(torch.load(opts.model)['state_dict'])
      pretrained_dict = pretrained_model.state_dict()
      pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict and 'conv11' not in k and 'rnn' not in k}
      model_dict.update(pretrained_dict)
      net.load_state_dict(model_dict)
  ### 第二种:直接接着前面训练
  # if os.path.exists(opts.model):
  #   print('loading model from %s' % args.model)
  #   step_start, learning_rate = net_utils.load_net(args.model, net, optimizer)
  ### 
  if opts.cuda:
    net.cuda()
  net.train()


  ## 2. 定义数据集
  converter = strLabelConverter(alphabet)
  ctc_loss = CTCLoss()
  data_generator = data_gen.get_batch(num_workers=opts.num_readers, 
           input_size=opts.input_size, batch_size=opts.batch_size, 
           train_list=opts.train_list, geo_type=opts.geo_type)
  # dg_ocr = ocr_gen.get_batch(num_workers=2,
  #         batch_size=opts.ocr_batch_size, 
  #         train_list=opts.ocr_feed_list, in_train=True, norm_height=norm_height, rgb=True)            # 训练OCR识别的数据集

  ## 3. 变量初始化
  bbox_loss = averager(); seg_loss = averager(); angle_loss = averager()
  loss_ctc = averager(); train_loss = averager()


  ## 4. 开始训练
  for step in range(step_start, opts.max_iters):
  
    # 读取数据
    images, image_fns, score_maps, geo_maps, training_masks, gtso, lbso, gt_idxs = next(data_generator)
    im_data = net_utils.np_to_variable(images.transpose(0, 3, 1, 2), is_cuda=opts.cuda)
    start = time.time()
    try:
      seg_pred, roi_pred, angle_pred, features = net(im_data)
    except:
      import sys, traceback
      traceback.print_exc(file=sys.stdout)
      continue
    
    # for EAST loss
    smaps_var = net_utils.np_to_variable(score_maps, is_cuda=opts.cuda)
    training_mask_var = net_utils.np_to_variable(training_masks, is_cuda=opts.cuda)
    angle_gt = net_utils.np_to_variable(geo_maps[:, :, :, 4], is_cuda=opts.cuda)
    geo_gt = net_utils.np_to_variable(geo_maps[:, :, :, [0, 1, 2, 3]], is_cuda=opts.cuda)
    try:
      loss = net.loss(seg_pred, smaps_var, training_mask_var, angle_pred, angle_gt, roi_pred, geo_gt)
    except:
      import sys, traceback
      traceback.print_exc(file=sys.stdout)
      continue
    
    bbox_loss.add(net.box_loss_value.item()); seg_loss.add(net.segm_loss_value.item()); angle_loss.add(net.angle_loss_value.item())
    
    
    # 训练ocr的部分
    try:
      # 10000步之前都是用文字的标注区域训练的//E2E-MLT中采用的这种策略
      if step > 10000 or True:            #this is just extra augumentation step ... in early stage just slows down training
        ctcl, gt_target , gt_proc = process_boxes(images, im_data, seg_pred[0], roi_pred[0], angle_pred[0], score_maps, gt_idxs, gtso, lbso, features, net, ctc_loss, opts, converter, debug=opts.debug)
        loss_ctc.add(ctcl)
        loss = loss + ctcl.cuda()
        train_loss.add(loss.item())

      net.zero_grad()
      optimizer.zero_grad()
      loss.backward()
      optimizer.step()
    except:
      import sys, traceback
      traceback.print_exc(file=sys.stdout)
      pass

    if step % opts.disp_interval == 0:
      end = time.time()            # 计算耗时
      ctc_loss_val2 = 0.0
      print('epoch %d[%d], loss: %.3f, bbox_loss: %.3f, seg_loss: %.3f, ang_loss: %.3f, ctc_loss: %.3f, time %.3f' % (
          step / 1000 * opts.batch_size, step, train_loss.val(), bbox_loss.val(), seg_loss.val(), angle_loss.val(), loss_ctc.val(), end-start))

    # for save mode
    if step > step_start and (step % ((1000 / opts.batch_size)*20) == 0):               # 20代保存一次
      save_name = os.path.join(opts.save_path, '{}_{}.h5'.format(model_name, step))
      state = {'step': step,
               'learning_rate': learning_rate,
              'state_dict': net.state_dict(),
              'optimizer': optimizer.state_dict()}
      torch.save(state, save_name)
      print('save model: {}'.format(save_name))
      train_loss.reset(); bbox_loss.reset(); seg_loss.reset(); angle_loss.reset(); loss_ctc.reset()               # 避免超出了范围
    decoder_path = 'model/decoder_%d.pth' % opt.loadModelEpoch
    print('loading pretrained decoder model from %s' % decoder_path)
    decoder.load_state_dict(torch.load(decoder_path))

text = torch.LongTensor(opt.batchSize * 5)
length = torch.IntTensor(opt.batchSize)

if opt.cuda:
    encoder.cuda()
    decoder.cuda()
    image = image.cuda()
    text = text.cuda()
    criterion = criterion.cuda()

# loss averager
loss_avg = utils.averager()

# setup optimizer
encoder_optimizer = optim.Adam(encoder.parameters(),
                               lr=opt.lr,
                               betas=(0.5, 0.999))
decoder_optimizer = optim.Adam(decoder.parameters(),
                               lr=opt.lr,
                               betas=(0.5, 0.999))


def trainBatch(encoder, decoder, criterion, encoder_optimizer,
               decoder_optimizer):
    data = train_iter.next()
    cpu_images, cpu_texts = data
    b = cpu_images.size(0)
Beispiel #5
0
    def val(encoder,
            decoder,
            criterion,
            batchsize,
            dataset,
            teach_forcing=False,
            max_iter=100):

        for e, d in zip(encoder.parameters(), decoder.parameters()):
            e.requires_grad = False
            d.requires_grad = False

        encoder.eval()
        decoder.eval()
        data_loader = torch.utils.data.DataLoader(dataset,
                                                  shuffle=False,
                                                  batch_size=batchsize,
                                                  num_workers=int(opt.workers))
        val_iter = iter(data_loader)

        n_correct = 0
        n_total = 0
        loss_avg = utils.averager()

        max_iter = min(max_iter, len(data_loader))
        # max_iter = len(data_loader) - 1
        for i in range(max_iter):
            data = val_iter.next()
            i += 1
            cpu_images, cpu_texts = data
            b = cpu_images.size(0)
            #utils.loadData(image, cpu_images)
            if opt.cuda:
                image = cpu_images.to('cuda')
            else:
                image = cpu_images
            target_variable = converter.encode(cpu_texts)
            n_total += len(cpu_texts[0]) + 1  # 还要准确预测出EOS停止位

            decoded_words = []
            decoded_label = []
            decoder_attentions = torch.zeros(
                len(cpu_texts[0]) + 1, opt.max_width)
            encoder_outputs = encoder(image)  # cnn+biLstm做特征提取

            if opt.cuda:  # cnn+biLstm做特征提取
                target_variable = target_variable.cuda()
                decoder_input = target_variable[0].cuda(
                )  # 初始化decoder的开始,从0开始输出
                decoder_hidden = decoder.initHidden(b).cuda()
            else:
                target_variable = target_variable
                decoder_input = target_variable[0]  # 初始化decoder的开始,从0开始输出
                decoder_hidden = decoder.initHidden(b)
            loss = 0.0
            if not teach_forcing:
                # 预测的时候采用非强制策略,将前一次的输出,作为下一次的输入,直到标签为EOS_TOKEN时停止
                for di in range(1, target_variable.shape[0]):  # 最大字符串的长度
                    decoder_output, decoder_hidden, decoder_attention = decoder(
                        decoder_input, decoder_hidden, encoder_outputs)
                    loss += criterion(decoder_output,
                                      target_variable[di])  # 每次预测一个字符
                    loss_avg.add(loss)
                    # ATTENTION VALUES
                    #decoder_attention = decoder_attention.squeeze()
                    #decoder_attentions[di-1,:decoder_attention.shape[0]] = decoder_attention.data
                    topv, topi = decoder_output.data.topk(1)
                    ni = topi.squeeze(1)
                    decoder_input = ni
                    if ni == EOS_TOKEN:
                        decoded_words.append('<EOS>')
                        decoded_label.append(EOS_TOKEN)
                        break
                    else:
                        decoded_words.append(converter.decode(ni))
                        decoded_label.append(ni)

            # 计算正确个数
            for pred, target in zip(decoded_label, target_variable[1:, :]):
                if pred == target:
                    n_correct += 1

            if i % 100 == 0:  # 每100次输出一次
                texts = cpu_texts[0]
                print('pred:%-20s, gt: %-20s' % (decoded_words, texts))

        accuracy = n_correct / float(n_total)
        print('Test loss: %f, accuray: %f' % (loss_avg.val(), accuracy))
        return (loss_avg.val(), accuracy)
Beispiel #6
0
    image = torch.FloatTensor(opt.batchSize, 3, opt.imgH, opt.imgH)
    text = torch.LongTensor(opt.batchSize * 5)
    length = torch.IntTensor(opt.batchSize)

    if opt.cuda:
        encoder.cuda()
        decoder.cuda()
        # encoder = torch.nn.DataParallel(encoder, device_ids=range(opt.ngpu))
        # decoder = torch.nn.DataParallel(decoder, device_ids=range(opt.ngpu))
        image = image.cuda()
        text = text.cuda()
        criterion = criterion.cuda()

    # loss averager
    loss_avg = utils.averager()
    loss_epoch = utils.averager()

    # setup optimizer
    if opt.adam:
        encoder_optimizer = optim.Adam(encoder.parameters(),
                                       lr=opt.lr,
                                       betas=(opt.beta1, 0.999))
        decoder_optimizer = optim.Adam(decoder.parameters(),
                                       lr=opt.lr,
                                       betas=(opt.beta1, 0.999))
    elif opt.adadelta:
        optimizer = optim.Adadelta(encoder.parameters(), lr=opt.lr)
    else:
        encoder_optimizer = optim.RMSprop(encoder.parameters(), lr=opt.lr)
        decoder_optimizer = optim.RMSprop(decoder.parameters(), lr=opt.lr)
def val(cfg, encoder, decoder, criterion, batchsize, dataset, teach_forcing=False, max_iter=100, use_beam_search=False, mode='1D'):
    
    print('Start val')

    for e, d in zip(encoder.parameters(), decoder.parameters()):
        e.requires_grad = False
        d.requires_grad = False

    encoder.eval()
    decoder.eval()
    data_loader = torch.utils.data.DataLoader(
        dataset, shuffle=False, batch_size=batchsize, num_workers=int(opt.workers))
    val_iter = iter(data_loader)

    n_correct = 0
    n_total = 0
    loss_avg = utils.averager()

    max_iter = min(max_iter, len(data_loader))
    # max_iter = len(data_loader) - 1
    for i in range(max_iter):
        data = val_iter.next()
        i += 1
        cpu_images, cpu_texts = data
        b = cpu_images.size(0)
        utils.loadData(image, cpu_images)

        target_variable = converter.encode(cpu_texts)
        ##因为batch_size是1,所以这里的n_total是单个text的长度+EOS停止位的预测
        n_total += len(cpu_texts[0]) + 1                       # 还要准确预测出EOS停止位

        decoded_words = []
        decoded_label = []
        #decoder_attentions = torch.zeros(len(cpu_texts[0]) + 1, opt.max_width)
        #encoder_outputs = encoder(image)            # cnn+biLstm做特征提取
        target_variable = target_variable.cuda()
        #decoder_input = target_variable[0].cuda()   # 初始化decoder的开始,从0开始输出
        #decoder_hidden = decoder.initHidden(b).cuda()
        loss = 0.0
        encoder_outputs = encoder(image)               # cnn+biLstm做特征提取  维度:70(280的宽度4倍下采样) × batchsize × 256(隐藏节点个数)

        if mode=='1D':                    
            decoder_input = target_variable[0].cuda()      # 初始化decoder的开始,从0开始输出 (batch 个label的开始SOS:0), 维度batch size
            decoder_hidden = decoder.initHidden(b).cuda()  #维度:(1, batch_size, self.hidden_size)
        else:
            bos_onehot = np.zeros((encoder_outputs.size(1), 1), dtype=np.int32)  ##[B,1]
            bos_onehot[:, 0] = cfg.SEQUENCE.BOS_TOKEN  ##0
            decoder_input = torch.tensor(bos_onehot.tolist(), device=gpu_device)   ##列表,[B,1],数字0
            decoder_hidden = torch.zeros((encoder_outputs.size(1), 256), device=gpu_device)  ##[B,256]

        ##测试函数val
        ##inference时words存储的是batch的word,最大长度32;
        ##decoded_scores是batch的每一个字符的置信度
        ##detailed_decoded_scores只有采用beam_search时才有数,不然就是空列表,具体的存放的是指定topk的置信度,即预测每一个字符时保存topk个当前预测字符的置信度
        ##例如一张图片预测出10个框(batch是10),每个batch中在预测具体的字符,这样words就是10个,decoded_scores是10个words对应的组成字符的置信度
        ##每一个word组成的字符置信度是一个列表

        char_scores = []
        detailed_char_scores = []

        #if not teach_forcing:
        if not use_beam_search:
            # 预测的时候采用非强制策略,将前一次的输出,作为下一次的输入,直到标签为EOS_TOKEN时停止
            for di in range(1, target_variable.shape[0]):  # 最大字符串的长度
                decoder_output, decoder_hidden, decoder_attention = decoder(
                    decoder_input, decoder_hidden, encoder_outputs)
                loss += criterion(decoder_output, target_variable[di])  # 每次预测一个字符
                loss_avg.add(loss)
                #decoder_attentions[di-1] = decoder_attention.data
                topv, topi = decoder_output.data.topk(1)
                char_scores.append(topv.item())   ##预测的topk(1)对应的字符的置信度(经过softmax之后)
                ni = topi.squeeze(1)
                decoder_input = ni
                #if ni.item() == EOS_TOKEN:
                if ni == EOS_TOKEN:
                    decoded_words.append('<EOS>')
                    decoded_label.append(EOS_TOKEN)
                    break
                else:
                    #decoded_words.append(converter.decode(ni.item()))
                    decoded_words.append(converter.decode(ni))
                    decoded_label.append(ni)
                    
        else:

            #top_seqs = decoder.beam_search(encoder_outputs, decoder_hidden, beam_size=6, max_len=cfg.SEQUENCE.MAX_LENGTH)
            top_seqs = beam_search_sevice.beam_search(cfg, mode, decoder, encoder_outputs, decoder_hidden, beam_size=6, max_len=cfg.SEQUENCE.MAX_LENGTH )
            top_seq = top_seqs[0]
            for character in top_seq[1:]:
                character_index = character[0]
                if character_index == EOS_TOKEN:
                    char_scores.append(character[1])
                    detailed_char_scores.append(character[2])
                    #decoded_words.append('<EOS>')
                    decoded_label.append(EOS_TOKEN)
                    break
                else:
                    if character_index == 0:
                        decoded_words.append('~')
                        char_scores.append(0.)
                        decoded_label.append(0)
                    else:
                        decoded_words.append(converter.decode(character_index))
                        decoded_label.append(character_index)
                        char_scores.append(character[1])
                        detailed_char_scores.append(character[2])

        # 计算正确个数
        for pred, target in zip(decoded_label, target_variable[1:,:]):
            if pred == target:
                n_correct += 1

        #if i % 100 == 0:                 # 每100次输出一次
        if i % 2 == 0:                 # 每100次输出一次
            texts = cpu_texts[0]
            print('pred:%-20s, gt: %-20s' % (decoded_words, texts))

    accuracy = n_correct / float(n_total)   
    print('Test loss: %f, accuray: %f' % (loss_avg.val(), accuracy))
def val(encoder, decoder, criterion, batchsize, dataset, teach_forcing=False, max_iter=100):
    print('Start val')

    for e, d in zip(encoder.parameters(), decoder.parameters()):
        e.requires_grad = False
        d.requires_grad = False

    encoder.eval()
    decoder.eval()
    data_loader = torch.utils.data.DataLoader(
        dataset, shuffle=False, batch_size=batchsize, num_workers=int(opt.workers))
    val_iter = iter(data_loader)

    n_correct = 0
    n_total = 0
    loss_avg = utils.averager()

    max_iter = min(max_iter, len(data_loader))
    # max_iter = len(data_loader) - 1
    for  i  in  range ( max_iter ):
        data = val_iter.next()
        i += 1
        cpu_images, cpu_texts = data
        b = cpu_images.size(0)
        utils.loadData(image, cpu_images)

        target_variable = converter.encode(cpu_texts)
        n_total  +=  len ( cpu_texts [ 0 ]) +  1                        # Also accurately predict the EOS stop bit

        decoded_words = []
        decoded_label = []
        decoder_attentions = torch.zeros(len(cpu_texts[0]) + 1, opt.max_width)
        encoder_outputs  =  encoder ( image )             # cnn+biLstm for feature extraction
        target_variable = target_variable.cuda()
        decoder_input  =  target_variable [ 0 ]. cuda ()    # Initialize the beginning of the decoder, start output from 0
        decoder_hidden = decoder.initHidden(b).cuda()
        loss = 0.0
        if not teach_forcing:
            # When forecasting, adopt a non-mandatory strategy, and use the previous output as the next input until the label is EOS_TOKEN.
            for  di  in  range ( 1 , target_variable . shape [ 0 ]):   # Maximum string length
                decoder_output, decoder_hidden, decoder_attention = decoder(
                    decoder_input, decoder_hidden, encoder_outputs)
                loss  +=  criterion ( decoder_output , target_variable [ di ])   # predict one character at a time
                loss_avg.add(loss)
                decoder_attentions[di-1] = decoder_attention.data
                topv, topi = decoder_output.data.topk(1)
                ni  =  topi . squeeze ( 1 )
                decoder_input = ni
                if ni == EOS_TOKEN:
                    decoded_words.append('<EOS>')
                    decoded_label.append(EOS_TOKEN)
                    break
                else:
                    decoded_words.append(converter.decode(ni))
                    decoded_label.append(ni)

        # Calculate the correct number
        for pred, target in zip(decoded_label, target_variable[1:,:]):
            if pred == target:
                n_correct += 1

        if  i  %  100  ==  0 :                  # output once every 100 times
            texts = cpu_texts[0]
            print('pred:%-20s, gt: %-20s' % (decoded_words, texts))

    accuracy = n_correct / float(n_total)
    print('Test loss: %f, accuray: %f' % (loss_avg.val(), accuracy))
Beispiel #9
0
def predict(encoder, decoder, criterion, batchsize, dataset, workers=2):
    for e, d in zip(encoder.parameters(), decoder.parameters()):
        e.requires_grad = False
        d.requires_grad = False
    encoder.eval()
    decoder.eval()

    data_loader = torch.utils.data.DataLoader(dataset,
                                              shuffle=False,
                                              batch_size=batchsize,
                                              num_workers=workers)
    iterator = iter(data_loader)

    n_correct = 0  # correct characters (including EOS)
    n_total = 0  # total characters (including EOS)
    n_current = 0  # current position
    loss_avg = utils.averager()

    EOS_TOKEN = 1  # end of sequence

    for _ in range(len(data_loader)):
        data = iterator.next()
        cpu_images, cpu_texts = data
        b = cpu_images.size(0)
        image = torch.FloatTensor(batchsize, 3, 1, 1)
        image = image.cuda()
        utils.loadData(image, cpu_images)
        target_variable = converter(alphabet).encode(cpu_texts)
        target_variable = target_variable.cuda()

        encoder_outputs = encoder(image)  # cnn+biLstm做特征提取
        decoder_input = target_variable[0].cuda()  # 初始化decoder的开始,从0开始输出
        decoder_hidden = decoder.initHidden(b).cuda()
        loss = 0.0

        decoded_words = []
        decoded_labels = []
        flag = [True] * batchsize

        for _ in range(batchsize):
            new_list = []
            decoded_words.append(new_list)
            new_list = []
            decoded_labels.append(new_list)

        for di in range(1, target_variable.shape[0]):  # 最大字符串的长度
            decoder_output, decoder_hidden, decoder_attention = decoder(
                decoder_input, decoder_hidden, encoder_outputs)
            loss += criterion(decoder_output, target_variable[di])  # 每次预测一个字符
            topv, topi = decoder_output.data.topk(1)
            ni = topi.squeeze()
            decoder_input = ni

            for count in range(batchsize):
                if flag[count]:
                    if ni[count] == EOS_TOKEN:
                        decoded_words[count].append('<EOS>')
                        decoded_labels[count].append(EOS_TOKEN)
                        flag[count] = False
                    else:
                        decoded_words[count].append(
                            converter(alphabet).decode(ni[count]))
                        decoded_labels[count].append(ni[count])

        loss_avg.add(loss)

        for count in range(batchsize):
            n_total += len(cpu_texts[count]) + 1  # EOS included
            for pred, target in zip(decoded_labels[count],
                                    target_variable[1:, count]):
                if pred == target:
                    n_correct += 1

            texts = cpu_texts[count]
            print('%d Pred:%-20s, GT: %-20s' %
                  (n_current, decoded_words[count], texts))
            n_current += 1

    accuracy = n_correct / float(n_total)
    print('Loss: %f, Accuracy: %f' % (loss_avg.val(), accuracy))