def ensure_batch_predictions_are_consistent(self):
     self.model.eval()
     single_predictions = []
     for i, instance in enumerate(self.instances):
         dataset = Batch([instance])
         tensors = dataset.as_tensor_dict(dataset.get_padding_lengths())
         result = self.model(**tensors)
         single_predictions.append(result)
     full_dataset = Batch(self.instances)
     batch_tensors = full_dataset.as_tensor_dict(
         full_dataset.get_padding_lengths())
     batch_predictions = self.model(**batch_tensors)
     for i, instance_predictions in enumerate(single_predictions):
         for key, single_predicted in instance_predictions.items():
             tolerance = 1e-6
             if 'loss' in key:
                 # Loss is particularly unstable; we'll just be satisfied if everything else is
                 # close.
                 continue
             single_predicted = single_predicted[0]
             batch_predicted = batch_predictions[key][i]
             if isinstance(single_predicted, torch.Tensor):
                 if single_predicted.size() != batch_predicted.size():
                     slices = tuple(
                         slice(0, size) for size in single_predicted.size())
                     batch_predicted = batch_predicted[slices]
                 assert_allclose(single_predicted.data.numpy(),
                                 batch_predicted.data.numpy(),
                                 atol=tolerance,
                                 err_msg=key)
             else:
                 assert single_predicted == batch_predicted, key
Beispiel #2
0
    def test_forward_pass_runs_correctly(self):
        """
        Check to make sure a forward pass on an ensemble of two identical copies of a model yields the same
        results as the model itself.
        """
        bidaf_ensemble = BidafEnsemble([self.model, self.model])

        batch = Batch(self.instances)
        batch.index_instances(self.vocab)
        training_tensors = batch.as_tensor_dict()

        bidaf_output_dict = self.model(**training_tensors)
        ensemble_output_dict = bidaf_ensemble(**training_tensors)

        metrics = self.model.get_metrics(reset=True)

        # We've set up the data such that there's a fake answer that consists of the whole
        # paragraph.  _Any_ valid prediction for that question should produce an F1 of greater than
        # zero, while if we somehow haven't been able to load the evaluation data, or there was an
        # error with using the evaluation script, this will fail.  This makes sure that we've
        # loaded the evaluation data correctly and have hooked things up to the official evaluation
        # script.
        assert metrics['f1'] > 0
        assert torch.equal(ensemble_output_dict['best_span'],
                           bidaf_output_dict['best_span'])
        assert ensemble_output_dict['best_span_str'] == bidaf_output_dict[
            'best_span_str']
Beispiel #3
0
def batch_to_ids(batch: List[List[str]]) -> torch.Tensor:
    """
    Converts a batch of tokenized sentences to a tensor representing the sentences with encoded characters
    (len(batch), max sentence length, max word length).

    Parameters
    ----------
    batch : ``List[List[str]]``, required
        A list of tokenized sentences.

    Returns
    -------
        A tensor of padded character ids.
    """
    instances = []
    indexer = ELMoTokenCharactersIndexer()
    for sentence in batch:
        tokens = [Token(token) for token in sentence]
        field = TextField(tokens, {'character_ids': indexer})
        instance = Instance({"elmo": field})
        instances.append(instance)

    dataset = Batch(instances)
    vocab = Vocabulary()
    dataset.index_instances(vocab)
    return dataset.as_tensor_dict()['elmo']['character_ids']
Beispiel #4
0
    def forward_on_instances(
            self, instances: List[Instance]) -> List[Dict[str, numpy.ndarray]]:
        """
        Takes a list of  :class:`~allennlp.data.instance.Instance`s, converts that text into
        arrays using this model's :class:`Vocabulary`, passes those arrays through
        :func:`self.forward()` and :func:`self.decode()` (which by default does nothing)
        and returns the result.  Before returning the result, we convert any
        ``torch.Tensors`` into numpy arrays and separate the
        batched output into a list of individual dicts per instance. Note that typically
        this will be faster on a GPU (and conditionally, on a CPU) than repeated calls to
        :func:`forward_on_instance`.

        Parameters
        ----------
        instances : List[Instance], required
            The instances to run the model on.
        cuda_device : int, required
            The GPU device to use.  -1 means use the CPU.

        Returns
        -------
        A list of the models output for each instance.
        """
        batch_size = len(instances)
        with torch.no_grad():
            cuda_device = self._get_prediction_device()
            dataset = Batch(instances)
            dataset.index_instances(self.vocab)
            model_input = dataset.as_tensor_dict(cuda_device=cuda_device)
            outputs = self.decode(self(**model_input))

            instance_separated_output: List[Dict[str, numpy.ndarray]] = [
                {} for _ in dataset.instances
            ]
            for name, output in list(outputs.items()):
                if isinstance(output, torch.Tensor):
                    # NOTE(markn): This is a hack because 0-dim pytorch tensors are not iterable.
                    # This occurs with batch size 1, because we still want to include the loss in that case.
                    if output.dim() == 0:
                        output = output.unsqueeze(0)

                    if output.size(0) != batch_size:
                        self._maybe_warn_for_unseparable_batches(name)
                        continue
                    output = output.detach().cpu().numpy()
                elif len(output) != batch_size:
                    self._maybe_warn_for_unseparable_batches(name)
                    continue
                outputs[name] = output
                for instance_output, batch_element in zip(
                        instance_separated_output, output):
                    instance_output[name] = batch_element
            return instance_separated_output
Beispiel #5
0
    def test_as_tensor_dict(self):
        dataset = Batch(self.instances)
        dataset.index_instances(self.vocab)
        padding_lengths = dataset.get_padding_lengths()
        tensors = dataset.as_tensor_dict(padding_lengths)
        text1 = tensors["text1"]["tokens"].detach().cpu().numpy()
        text2 = tensors["text2"]["tokens"].detach().cpu().numpy()

        numpy.testing.assert_array_almost_equal(text1, numpy.array([[2, 3, 4, 5, 6],
                                                                    [1, 3, 4, 5, 6]]))
        numpy.testing.assert_array_almost_equal(text2, numpy.array([[2, 3, 4, 1, 5, 6],
                                                                    [2, 3, 1, 0, 0, 0]]))
Beispiel #6
0
 def test_tagger_with_elmo_token_embedder_forward_pass_runs_correctly(self):
     dataset = Batch(self.instances)
     dataset.index_instances(self.vocab)
     training_tensors = dataset.as_tensor_dict()
     output_dict = self.model(**training_tensors)
     tags = output_dict['tags']
     assert len(tags) == 2
     assert len(tags[0]) == 7
     assert len(tags[1]) == 7
     for example_tags in tags:
         for tag_id in example_tags:
             tag = self.model.vocab.get_token_from_index(tag_id,
                                                         namespace="labels")
             assert tag in {'O', 'I-ORG', 'I-PER', 'I-LOC'}
Beispiel #7
0
    def _sentences_to_ids(self, sentences):
        indexer = ELMoTokenCharactersIndexer()

        # For each sentence, first create a TextField, then create an instance
        instances = []
        for sentence in sentences:
            tokens = [Token(token) for token in sentence]
            field = TextField(tokens, {'character_ids': indexer})
            instance = Instance({'elmo': field})
            instances.append(instance)

        dataset = Batch(instances)
        vocab = Vocabulary()
        dataset.index_instances(vocab)
        return dataset.as_tensor_dict()['elmo']['character_ids']
Beispiel #8
0
    def get_vocab_and_both_elmo_indexed_ids(batch: List[List[str]]):
        instances = []
        indexer = ELMoTokenCharactersIndexer()
        indexer2 = SingleIdTokenIndexer()
        for sentence in batch:
            tokens = [Token(token) for token in sentence]
            field = TextField(tokens, {
                'character_ids': indexer,
                'tokens': indexer2
            })
            instance = Instance({"elmo": field})
            instances.append(instance)

        dataset = Batch(instances)
        vocab = Vocabulary.from_instances(instances)
        dataset.index_instances(vocab)
        return vocab, dataset.as_tensor_dict()["elmo"]
Beispiel #9
0
    def test_forward_pass_runs_correctly(self):
        batch = Batch(self.instances)
        batch.index_instances(self.vocab)
        training_tensors = batch.as_tensor_dict()
        output_dict = self.model(**training_tensors)

        metrics = self.model.get_metrics(reset=True)
        # We've set up the data such that there's a fake answer that consists of the whole
        # paragraph.  _Any_ valid prediction for that question should produce an F1 of greater than
        # zero, while if we somehow haven't been able to load the evaluation data, or there was an
        # error with using the evaluation script, this will fail.  This makes sure that we've
        # loaded the evaluation data correctly and have hooked things up to the official evaluation
        # script.
        assert metrics['f1'] > 0

        span_start_probs = output_dict['span_start_probs'][0].data.numpy()
        span_end_probs = output_dict['span_start_probs'][0].data.numpy()
        assert_almost_equal(numpy.sum(span_start_probs, -1), 1, decimal=6)
        assert_almost_equal(numpy.sum(span_end_probs, -1), 1, decimal=6)
        span_start, span_end = tuple(output_dict['best_span'][0].data.numpy())
        assert span_start >= 0
        assert span_start <= span_end
        assert span_end < self.instances[0].fields['passage'].sequence_length()
        assert isinstance(output_dict['best_span_str'][0], str)