Beispiel #1
0
def main(xls_file, start_cmd, end_cmd, cleanmr):
    if start_cmd:
        assert end_cmd is not None, "Wrong input"
    if end_cmd:
        assert start_cmd is not None, "Wrong input"
    if cleanmr:
        os.system("cleanmr")

    if start_cmd:
        os.system(start_cmd)
    srtml.init()

    df = pd.read_excel(xls_file, sheet_name="Model Raw Profile")

    for index, row in df.iterrows():

        pgraph = create_pgraph(df.loc[index, "Model Name"])

        profile_dict = convert_profiles_to_regression_models(
            json.loads(df.loc[index, "raw profile"]))
        dinfo = DATASET_INFORMATION(
            **json.loads(df.loc[index, "Dataset Information"]))
        pgraph.submit(
            df.loc[index, "Accuracy"],
            dinfo,
            df.loc[index, "feature"],
            profile_dict,
        )

    shutdown()
    if end_cmd:
        os.system(end_cmd)
Beispiel #2
0
def main(xls_file, start_cmd, end_cmd):
    if start_cmd:
        os.system(start_cmd)
    srtml.init()

    df = pd.read_excel(xls_file, sheet_name="Arrival Information")
    columns = [
        "mu (qps)",
        "cv",
        "# requests",
        "Latency Constraint (ms)",
        "Planner",
        "configuration",
        "Estimated Latency (ms)",
        "Cost",
        "Accuracy",
    ]
    new_df = pd.DataFrame(columns=columns)

    for index, row in df.iterrows():
        row_df = {columns[i]: df.loc[index, columns[i]] for i in range(5)}

        with VGraph(name="classifier") as graph:
            classifier = Classifier(
                feature=IMAGE_CLASSIFICATION_FEATURE,
                dataset_information=dinfo,
                name="VClassifier",
            )

        arrival_curve = generate_fixed_arrival_process(
            mean_qps=df.loc[index, columns[0]],
            cv=df.loc[index, columns[1]],
            num_requests=df.loc[index, columns[2]],
        ).tolist()

        config = graph.configure(
            throughput_qps_constraint=df.loc[index, columns[0]],
            latency_ms_constraint=df.loc[index, columns[3]],
            planner_kwargs={"inter_arrival_process": arrival_curve},
            planner_cls=PLANNER_CLS.get(df.loc[index, columns[4]], None),
            print_state=True,
            materialize=False,
        )

        estimated_values = graph.state.get_estimate_values()._asdict()

        row_df["configuration"] = json.dumps(config)
        row_df["Estimated Latency (ms)"] = estimated_values["latency"]
        row_df["Cost"] = estimated_values["cost"]
        row_df["Accuracy"] = estimated_values["accuracy"]

        new_df = new_df.append(row_df, ignore_index=True)

    shutdown()
    if end_cmd:
        os.system(end_cmd)

    with pd.ExcelWriter(xls_file, mode="a") as writer:
        new_df.to_excel(writer, sheet_name="Planner Configuration")
def main(xls_file, start_cmd, end_cmd):
    if start_cmd:
        assert end_cmd is not None, "Wrong input"
    if end_cmd:
        assert start_cmd is not None, "Wrong input"

    df = pd.read_excel(xls_file, sheet_name="Model Information")
    clean_profile_df = pd.DataFrame()
    raw_profile_df = pd.DataFrame(columns=[
        "pgraph",
        "raw profile",
        "Dataset Information",
        "feature",
        "Model Name",
        "Accuracy",
        "sysinfo",
    ])
    for index, row in df.iterrows():

        if start_cmd:
            os.system(start_cmd)
        srtml.init()

        # profile_df = pd.DataFrame(
        #     columns=[
        #         "pgraph"
        #     ]
        # )
        pgraph = create_pgraph(df.loc[index, "Model Name"])

        profile_dict = profile_pgraph(
            pgraph, **json.loads(df.loc[index, "profile configuration"]))

        pprint(profile_dict)
        clean_profile_df = pd.concat([
            clean_profile_df,
            get_dataframe_from_profile(pgraph.ppu_identifier, profile_dict),
        ])
        raw_profile_df = raw_profile_df.append(
            {
                "pgraph": pgraph.ppu_identifier,
                "raw profile": json.dumps(profile_dict),
                "Dataset Information": df.loc[index, "Dataset Information"],
                "feature": df.loc[index, "feature"],
                "Model Name": df.loc[index, "Model Name"],
                "Accuracy": df.loc[index, "Accuracy"],
                "sysinfo": get_sysinfo(),
            },
            ignore_index=True,
        )

        shutdown()
        if end_cmd:
            os.system(end_cmd)

    with pd.ExcelWriter(xls_file, mode="a") as writer:
        clean_profile_df.to_excel(writer, sheet_name="Model Profile")
        raw_profile_df.to_excel(writer, sheet_name="Model Raw Profile")
Beispiel #4
0
def main(xls_file, start_cmd, end_cmd, cleanmr):
    if start_cmd:
        assert end_cmd is not None, "Wrong input"
    if end_cmd:
        assert start_cmd is not None, "Wrong input"
    if cleanmr:
        os.system("cleanmr")

    if start_cmd:
        os.system(start_cmd)
    ray_serve_kwargs = {
        "ray_init_kwargs": {
            "object_store_memory":
            int(5e10),
            "num_cpus":
            24,
            "_internal_config":
            json.dumps({
                "max_direct_call_object_size": 1000 * 1024 * 1024,  # 10Mb
                "max_grpc_message_size": 10000 * 1024 * 1024,  # 100Mb
            }),
            # "resources": resources,
        },
        "start_server": False,
    }

    srtml.init()

    df = pd.read_excel(xls_file, sheet_name="Model Raw Profile")

    for index, row in df.iterrows():

        pgraph = create_pgraph(df.loc[index, "Model Name"])

        profile_dict = convert_profiles_to_regression_models(
            json.loads(df.loc[index, "raw profile"]))
        dinfo = DATASET_INFORMATION(
            **json.loads(df.loc[index, "Dataset Information"]))
        pgraph.submit(
            df.loc[index, "Accuracy"],
            dinfo,
            df.loc[index, "feature"],
            profile_dict,
        )

    shutdown()
    if end_cmd:
        os.system(end_cmd)
Beispiel #5
0
def main(xls_file, start_cmd, end_cmd):

    df = pd.read_excel(xls_file, sheet_name="Model Information")
    columns = [
        "mu (qps)",
        "cv",
        "# requests",
        "Latency Constraint (ms)",
        "Ingest mu Observed (qps)",
        "Throughput (qps)",
        "p95 (ms)",
        "p99 (ms)",
    ]
    raw_columns = [*columns[:3], "Latency (ms)"]
    new_df_clean = pd.DataFrame(columns=columns)
    new_df_raw = pd.DataFrame(columns=raw_columns)

    for index, row in df.iterrows():
        row_df = {columns[i]: df.loc[index, columns[i]] for i in range(3)}
        raw_row_df = dict(row_df)

        graph = create_pgraph(df.loc[index, "Model Name"],
                              df.loc[index, "Number of Conditionals"])
        graph.configure(SERVE_MODE)

        if start_cmd:
            os.system(start_cmd)
        srtml.init(start_server=False)

        # pgraph_metadata = json.loads(df.loc[index, "configuration"])
        # graph.materialize(pgraph_metadata=pgraph_metadata)

        arrival_curve = generate_fixed_arrival_process(
            mean_qps=df.loc[index, columns[0]],
            cv=df.loc[index, columns[1]],
            num_requests=df.loc[index, columns[2]],
        ).tolist()

        graph.provision(SERVE_MODE)
        # img_path = os.path.join(IMAGE_CLASSIFICATION_DIR, "elephant.jpg")
        # data = base64.b64encode(open(img_path, "rb").read())

        # Warm-up and throughput calculation
        WARMUP = 200
        NUM_REQUESTS = 1000
        ppu = graph.handle
        futures = [ppu.remote(data=1) for _ in range(WARMUP)]
        ray.get(futures)
        start_time = time.time()
        futures = [ppu.remote(data=1) for _ in range(NUM_REQUESTS)]
        ray.wait(futures, num_returns=len(futures))
        end_time = time.time()
        time_taken = end_time - start_time
        throughput_qps = NUM_REQUESTS / time_taken

        row_df[columns[5]] = throughput_qps

        # latency calculation
        http_actor = HTTPProxyActor.remote(host="127.0.0.1", port=8000)
        ray.get(http_actor.register_route.remote("/noop", ppu))
        ray.get(http_actor.init_latency.remote())

        client_path = os.path.join("noop_client.go", )

        row_df[columns[3]] = df.loc[index, columns[3]]

        ls_output = subprocess.Popen([
            "go",
            "run",
            client_path,
            str(df.loc[index, columns[3]]),
            str(1),
            *[str(val) for val in arrival_curve],
        ])
        ls_output.communicate()

        latency_list = ray.get(http_actor.get_latency.remote())
        ingest_mu, latency_ms, p95_ms, p99_ms = get_latency_stats(
            collected_latency=latency_list)
        row_df[columns[4]] = ingest_mu
        row_df[columns[6]] = p95_ms
        row_df[columns[7]] = p99_ms

        raw_row_df["Latency (ms)"] = latency_ms

        shutdown()
        if end_cmd:
            os.system(end_cmd)

        new_df_clean = new_df_clean.append(row_df, ignore_index=True)
        new_df_raw = new_df_raw.append(raw_row_df, ignore_index=True)

    with pd.ExcelWriter(xls_file, mode="a") as writer:
        new_df_clean.to_excel(writer, sheet_name="Results")
        new_df_raw.to_excel(writer, sheet_name="Results(Raw)")
Beispiel #6
0
def main(xls_file, start_cmd, end_cmd):

    df = pd.read_excel(xls_file, sheet_name="Planner Configuration")
    columns = [
        "mu (qps)",
        "cv",
        "# requests",
        "Latency Constraint (ms)",
        "Planner",
        "Estimated Latency (ms)",
        "Cost",
        "Accuracy",
        "Ingest mu Observed (qps)",
        "Throughput (qps)",
        "p95 (ms)",
        "p99 (ms)",
    ]
    raw_columns = [*columns[:8], "Latency (ms)"]
    new_df_clean = pd.DataFrame(columns=columns)
    new_df_raw = pd.DataFrame(columns=raw_columns)

    for index, row in df.iterrows():
        row_df = {columns[i]: df.loc[index, columns[i]] for i in range(8)}
        raw_row_df = dict(row_df)

        if start_cmd:
            os.system(start_cmd)
        ray_serve_kwargs = {
            "ray_init_kwargs": {
                "object_store_memory":
                int(5e10),
                "num_cpus":
                24,
                "_internal_config":
                json.dumps({
                    "max_direct_call_object_size": 10 * 1024 * 1024,  # 10Mb
                    "max_grpc_message_size": 100 * 1024 * 1024,  # 100Mb
                }),
                # "resources": resources,
            },
            "start_server": False,
        }

        srtml.init(ray_serve_kwargs=ray_serve_kwargs)

        with VGraph(name="bert") as graph:
            classifier = Classifier(
                feature=IMAGE_CLASSIFICATION_FEATURE,
                dataset_information=dinfo,
                name="VClassifier",
            )

        pgraph_metadata = json.loads(df.loc[index, "configuration"])
        # pgraph_metadata['bert/VClassifier']['ppu_state']['Sentimental-bert24-2/bert24_p2_stage0']['resources']['Tesla P40'] = 0.2
        # pgraph_metadata['bert/VClassifier']['ppu_state']['Sentimental-bert24-2/bert24_p2_stage0']['num_gpus'] = 0.2
        graph.materialize(pgraph_metadata=pgraph_metadata)

        arrival_curve = generate_fixed_arrival_process(
            mean_qps=df.loc[index, columns[0]],
            cv=df.loc[index, columns[1]],
            num_requests=df.loc[index, columns[2]],
        ).tolist()
        graph.provision(SERVE_MODE)
        # img_path = os.path.join(IMAGE_CLASSIFICATION_DIR, "elephant.jpg")
        # data = base64.b64encode(open(img_path, "rb").read())
        data = 'I am hot and sexy'
        # Warm-up and throughput calculation
        WARMUP = 200
        NUM_REQUESTS = 1000
        vpu = graph.handle
        futures = [vpu.remote(text=data) for _ in range(WARMUP)]
        ray.get(futures)
        start_time = time.time()
        futures = [vpu.remote(text=data) for _ in range(NUM_REQUESTS)]
        ray.wait(futures, num_returns=len(futures))
        end_time = time.time()
        time_taken = end_time - start_time
        throughput_qps = NUM_REQUESTS / time_taken

        row_df[columns[9]] = throughput_qps

        print('#######################################')
        # latency calculation
        http_actor = HTTPProxyActor.remote(host="127.0.0.1", port=8001)
        ray.get(http_actor.register_route.remote("/bert", vpu))
        ray.get(http_actor.init_latency.remote())

        client_path = os.path.join(
            IMAGE_CLASSIFICATION_DIR_TWO_VERTEX,
            "accuracy_degradation",
            "virtual",
            "image_prepoc_client.go",
        )

        ls_output = subprocess.Popen([
            "go",
            "run",
            client_path,
            str(df.loc[index, columns[3]]),
            'lol',
            *[str(val) for val in arrival_curve],
        ])
        ls_output.communicate()

        latency_list = ray.get(http_actor.get_latency.remote())
        ingest_mu, latency_ms, p95_ms, p99_ms = get_latency_stats(
            collected_latency=latency_list)
        row_df[columns[8]] = ingest_mu
        row_df[columns[10]] = p95_ms
        row_df[columns[11]] = p99_ms

        raw_row_df["Latency (ms)"] = latency_ms

        elapsed_latency_list = [
            latency_dict["end"] - latency_dict["start"]
            for latency_dict in latency_list
        ]
        elapsed_latency_list.sort()
        f = open(
            "/nethome/gkakkar7/srtml-experiments/experimental_results/qps_latency_tradeoff/125q_200l_p2/latencies.txt",
            "w")
        for entry in elapsed_latency_list:
            f.write(str(entry))
            f.write("\n")
        f.close()

        shutdown()
        if end_cmd:
            os.system(end_cmd)

        new_df_clean = new_df_clean.append(row_df, ignore_index=True)
        new_df_raw = new_df_raw.append(raw_row_df, ignore_index=True)

    with pd.ExcelWriter(xls_file, mode="a") as writer:
        new_df_clean.to_excel(writer, sheet_name="Planner Config Run Results")
        new_df_raw.to_excel(writer,
                            sheet_name="Planner Config Run Results(Raw)")