Beispiel #1
0
    def __init__(
        self,
        observation_space: gym.spaces.Space,
        action_space: gym.spaces.Space,
        lr_schedule: Callable,
        use_sde: bool = False,
        valuehead_hidden=512,
        features_extractor_class: Type[
            BaseFeaturesExtractor] = ResFeatureExtractor,
        features_extractor_kwargs: Optional[Dict[str, Any]] = None,
        optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam,
        optimizer_kwargs: Optional[Dict[str, Any]] = None,
    ):
        super().__init__(
            observation_space=observation_space,
            action_space=action_space,
            features_extractor_class=features_extractor_class,
            features_extractor_kwargs=features_extractor_kwargs,
            optimizer_class=optimizer_class,
            optimizer_kwargs=optimizer_kwargs,
        )

        self.features_extractor = features_extractor_class(
            self.observation_space, **self.features_extractor_kwargs)
        self.action_dist = CategoricalDistribution(self.action_space.n)
        self.valuehead_hidden = valuehead_hidden

        self._build(lr_schedule)
Beispiel #2
0
    def __init__(self, observation_space: gym.spaces.Space,
                 action_space: gym.spaces.Space,
                 net_arch: List[int],
                 features_extractor: nn.Module,
                 features_dim: int,
                 activation_fn: Type[nn.Module] = nn.ReLU,
                 use_sde: bool = False,
                 log_std_init: float = -3,
                 full_std: bool = True,
                 sde_net_arch: Optional[List[int]] = None,
                 use_expln: bool = False,
                 clip_mean: float = 2.0,
                 normalize_images: bool = True,
                 device: Union[th.device, str] = 'auto'):
        super().__init__(observation_space, action_space,
                                    features_extractor=features_extractor,
                                    normalize_images=normalize_images,
                                    device=device,
                                    squash_output=True)

        # Save arguments to re-create object at loading
        self.use_sde = use_sde
        self.sde_features_extractor = None
        self.sde_net_arch = sde_net_arch
        self.net_arch = net_arch
        self.features_dim = features_dim
        self.activation_fn = activation_fn
        self.log_std_init = log_std_init
        self.sde_net_arch = sde_net_arch
        self.use_expln = use_expln
        self.full_std = full_std
        self.clip_mean = clip_mean

        action_dim = get_action_dim(self.action_space)
        latent_pi_net = create_mlp(features_dim, -1, net_arch, activation_fn)
        self.latent_pi = nn.Sequential(*latent_pi_net)
        last_layer_dim = net_arch[-1] if len(net_arch) > 0 else features_dim

        self.action_dist = CategoricalDistribution(self.action_space.n)
        self.mu = nn.Linear(last_layer_dim, self.action_space.n)
def test_categorical():
    # The entropy can be approximated by averaging the negative log likelihood
    # mean negative log likelihood == entropy
    dist = CategoricalDistribution(N_ACTIONS)
    set_random_seed(1)
    action_logits = th.rand(N_SAMPLES, N_ACTIONS)
    dist = dist.proba_distribution(action_logits)

    actions = dist.get_actions()
    entropy = dist.entropy()
    log_prob = dist.log_prob(actions)
    assert th.allclose(entropy.mean(), -log_prob.mean(), rtol=2e-4)
Beispiel #4
0
class DiscreteActor(BasePolicy):
    """
    Actor network (policy) for SAC.

    :param observation_space: (gym.spaces.Space) Obervation space
    :param action_space: (gym.spaces.Space) Action space
    :param net_arch: ([int]) Network architecture
    :param features_extractor: (nn.Module) Network to extract features
        (a CNN when using images, a nn.Flatten() layer otherwise)
    :param features_dim: (int) Number of features
    :param activation_fn: (Type[nn.Module]) Activation function
    :param use_sde: (bool) Whether to use State Dependent Exploration or not
    :param log_std_init: (float) Initial value for the log standard deviation
    :param full_std: (bool) Whether to use (n_features x n_actions) parameters
        for the std instead of only (n_features,) when using gSDE.
    :param sde_net_arch: ([int]) Network architecture for extracting features
        when using gSDE. If None, the latent features from the policy will be used.
        Pass an empty list to use the states as features.
    :param use_expln: (bool) Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure
        a positive standard deviation (cf paper). It allows to keep variance
        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.
    :param clip_mean: (float) Clip the mean output when using gSDE to avoid numerical instability.
    :param normalize_images: (bool) Whether to normalize images or not,
         dividing by 255.0 (True by default)
    :param device: (Union[th.device, str]) Device on which the code should run.
    """

    def __init__(self, observation_space: gym.spaces.Space,
                 action_space: gym.spaces.Space,
                 net_arch: List[int],
                 features_extractor: nn.Module,
                 features_dim: int,
                 activation_fn: Type[nn.Module] = nn.ReLU,
                 use_sde: bool = False,
                 log_std_init: float = -3,
                 full_std: bool = True,
                 sde_net_arch: Optional[List[int]] = None,
                 use_expln: bool = False,
                 clip_mean: float = 2.0,
                 normalize_images: bool = True,
                 device: Union[th.device, str] = 'auto'):
        super().__init__(observation_space, action_space,
                                    features_extractor=features_extractor,
                                    normalize_images=normalize_images,
                                    device=device,
                                    squash_output=True)

        # Save arguments to re-create object at loading
        self.use_sde = use_sde
        self.sde_features_extractor = None
        self.sde_net_arch = sde_net_arch
        self.net_arch = net_arch
        self.features_dim = features_dim
        self.activation_fn = activation_fn
        self.log_std_init = log_std_init
        self.sde_net_arch = sde_net_arch
        self.use_expln = use_expln
        self.full_std = full_std
        self.clip_mean = clip_mean

        action_dim = get_action_dim(self.action_space)
        latent_pi_net = create_mlp(features_dim, -1, net_arch, activation_fn)
        self.latent_pi = nn.Sequential(*latent_pi_net)
        last_layer_dim = net_arch[-1] if len(net_arch) > 0 else features_dim

        self.action_dist = CategoricalDistribution(self.action_space.n)
        self.mu = nn.Linear(last_layer_dim, self.action_space.n)

    def _get_data(self) -> Dict[str, Any]:
        data = super()._get_data()

        data.update(dict(
            net_arch=self.net_arch,
            features_dim=self.features_dim,
            activation_fn=self.activation_fn,
            use_sde=self.use_sde,
            log_std_init=self.log_std_init,
            full_std=self.full_std,
            sde_net_arch=self.sde_net_arch,
            use_expln=self.use_expln,
            features_extractor=self.features_extractor,
            clip_mean=self.clip_mean
        ))
        return data

    def get_std(self) -> th.Tensor:
        """
        Retrieve the standard deviation of the action distribution.
        Only useful when using gSDE.
        It corresponds to ``th.exp(log_std)`` in the normal case,
        but is slightly different when using ``expln`` function
        (cf StateDependentNoiseDistribution doc).

        :return: (th.Tensor)
        """
        msg = 'get_std() is only available when using gSDE'
        assert isinstance(self.action_dist, StateDependentNoiseDistribution), msg
        return self.action_dist.get_std(self.log_std)

    def reset_noise(self, batch_size: int = 1) -> None:
        """
        Sample new weights for the exploration matrix, when using gSDE.

        :param batch_size: (int)
        """
        msg = 'reset_noise() is only available when using gSDE'
        assert isinstance(self.action_dist, StateDependentNoiseDistribution), msg
        self.action_dist.sample_weights(self.log_std, batch_size=batch_size)

    def get_action_dist_params(self, obs: th.Tensor) -> Tuple[th.Tensor, th.Tensor, Dict[str, th.Tensor]]:
        """
        Get the parameters for the action distribution.

        :param obs: (th.Tensor)
        :return: (Tuple[th.Tensor, th.Tensor, Dict[str, th.Tensor]])
            Mean, standard deviation and optional keyword arguments.
        """
        features = self.extract_features(obs)
        latent_pi = self.latent_pi(features)
        logits = self.mu(latent_pi)

        return logits, {}

    def forward(self, obs: th.Tensor, deterministic: bool = False) -> th.Tensor:
        logits, kwargs = self.get_action_dist_params(obs)
        # Note: the action is squashed
        return self.action_dist.actions_from_params(logits,
                                                    deterministic=deterministic, **kwargs)

    def action_log_prob(self, obs: th.Tensor) -> Tuple[th.Tensor, th.Tensor]:
        logits, kwargs = self.get_action_dist_params(obs)
        # return action and associated log prob
        return self.action_dist.log_prob_from_params(logits, **kwargs)

    def _predict(self, observation: th.Tensor, deterministic: bool = False) -> th.Tensor:
        return self.forward(observation, deterministic)
                                                 th.tensor(0.2)))

    if isinstance(dist, DiagGaussianDistribution):
        dist = dist.proba_distribution(deterministic_actions, log_std)
    else:
        dist.sample_weights(log_std, batch_size=N_SAMPLES)
        dist = dist.proba_distribution(deterministic_actions, log_std, state)

    actions = dist.get_actions()
    entropy = dist.entropy()
    log_prob = dist.log_prob(actions)
    assert th.allclose(entropy.mean(), -log_prob.mean(), rtol=5e-3)


categorical_params = [
    (CategoricalDistribution(N_ACTIONS), N_ACTIONS),
    (MultiCategoricalDistribution([2, 3]), sum([2, 3])),
    (BernoulliDistribution(N_ACTIONS), N_ACTIONS),
]


@pytest.mark.parametrize("dist, CAT_ACTIONS", categorical_params)
def test_categorical(dist, CAT_ACTIONS):
    # The entropy can be approximated by averaging the negative log likelihood
    # mean negative log likelihood == entropy
    set_random_seed(1)
    action_logits = th.rand(N_SAMPLES, CAT_ACTIONS)
    dist = dist.proba_distribution(action_logits)
    actions = dist.get_actions()
    entropy = dist.entropy()
    log_prob = dist.log_prob(actions)
Beispiel #6
0
    if isinstance(dist, DiagGaussianDistribution):
        dist = dist.proba_distribution(deterministic_actions, log_std)
    else:
        state = th.rand(1, N_FEATURES).repeat(N_SAMPLES, 1)
        dist.sample_weights(log_std, batch_size=N_SAMPLES)
        dist = dist.proba_distribution(deterministic_actions, log_std, state)

    actions = dist.get_actions()
    entropy = dist.entropy()
    log_prob = dist.log_prob(actions)
    assert th.allclose(entropy.mean(), -log_prob.mean(), rtol=5e-3)


categorical_params = [
    (CategoricalDistribution(N_ACTIONS), N_ACTIONS),
    (MultiCategoricalDistribution([2, 3]), sum([2, 3])),
    (BernoulliDistribution(N_ACTIONS), N_ACTIONS),
]


@pytest.mark.parametrize("dist, CAT_ACTIONS", categorical_params)
def test_categorical(dist, CAT_ACTIONS):
    # The entropy can be approximated by averaging the negative log likelihood
    # mean negative log likelihood == entropy
    set_random_seed(1)
    action_logits = th.rand(N_SAMPLES, CAT_ACTIONS)
    dist = dist.proba_distribution(action_logits)
    actions = dist.get_actions()
    entropy = dist.entropy()
    log_prob = dist.log_prob(actions)
                                             log_std_init=th.log(
                                                 th.tensor(0.2)))

    if isinstance(dist, DiagGaussianDistribution):
        dist = dist.proba_distribution(deterministic_actions, log_std)
    else:
        dist.sample_weights(log_std, batch_size=N_SAMPLES)
        dist = dist.proba_distribution(deterministic_actions, log_std, state)

    actions = dist.get_actions()
    entropy = dist.entropy()
    log_prob = dist.log_prob(actions)
    assert th.allclose(entropy.mean(), -log_prob.mean(), rtol=5e-3)


categorical_params = [(CategoricalDistribution(N_ACTIONS), N_ACTIONS),
                      (MultiCategoricalDistribution([2, 3]), sum([2, 3])),
                      (BernoulliDistribution(N_ACTIONS), N_ACTIONS)]


@pytest.mark.parametrize("dist, CAT_ACTIONS", categorical_params)
def test_categorical(dist, CAT_ACTIONS):
    # The entropy can be approximated by averaging the negative log likelihood
    # mean negative log likelihood == entropy
    set_random_seed(1)
    action_logits = th.rand(N_SAMPLES, CAT_ACTIONS)
    dist = dist.proba_distribution(action_logits)
    actions = dist.get_actions()
    entropy = dist.entropy()
    log_prob = dist.log_prob(actions)
    assert th.allclose(entropy.mean(), -log_prob.mean(), rtol=5e-3)