def test_mean_2(date_func): s1mask = s1(date_func).mask(( timestamp(2020, 1, 2, date_func=date_func, use_str=True), timestamp(2020, 1, 4, date_func=date_func, use_str=True), )) s2mask = (s2(date_func).mask(( timestamp(2020, 1, 7, date_func=date_func, use_str=True), timestamp(2020, 1, 9, date_func=date_func, use_str=True), )).mask((None, timestamp(2019, 12, 31, date_func=date_func, use_str=True)))) result = sc.mean([s1mask, s2mask]) pd.testing.assert_series_equal( result.step_values, pd.Series({ timestamp(2019, 12, 31, date_func=date_func): -1.75, timestamp(2020, 1, 1, date_func=date_func): -1.125, timestamp(2020, 1, 2, date_func=date_func): np.nan, timestamp(2020, 1, 4, date_func=date_func): 1.125, timestamp(2020, 1, 5, date_func=date_func): 0.75, timestamp(2020, 1, 6, date_func=date_func): -0.5, timestamp(2020, 1, 7, date_func=date_func): np.nan, timestamp(2020, 1, 9, date_func=date_func): -1.5, timestamp(2020, 1, 10, date_func=date_func): 0.0, timestamp(2020, 1, 11, date_func=date_func): 2.5, timestamp(2020, 1, 13, date_func=date_func): 0.0, }), check_names=False, check_index_type=False, ) assert np.isnan(result.initial_value)
def test_mean_1(date_func): s1mask = s1(date_func).mask(( timestamp(2020, 1, 2, date_func=date_func, use_str=True), timestamp(2020, 1, 4, date_func=date_func, use_str=True), )) s2mask = s2(date_func).mask(( timestamp(2020, 1, 7, date_func=date_func, use_str=True), timestamp(2020, 1, 9, date_func=date_func, use_str=True), )) pd.testing.assert_series_equal( sc.mean([s1mask, s2mask]).step_values, pd.Series({ timestamp(2019, 12, 27, date_func=date_func): -0.875, timestamp(2019, 12, 29, date_func=date_func): -1.75, timestamp(2020, 1, 1, date_func=date_func): -1.125, timestamp(2020, 1, 2, date_func=date_func): np.nan, timestamp(2020, 1, 4, date_func=date_func): 1.125, timestamp(2020, 1, 5, date_func=date_func): 0.75, timestamp(2020, 1, 6, date_func=date_func): -0.5, timestamp(2020, 1, 7, date_func=date_func): np.nan, timestamp(2020, 1, 9, date_func=date_func): -1.5, timestamp(2020, 1, 10, date_func=date_func): 0.0, timestamp(2020, 1, 11, date_func=date_func): 2.5, timestamp(2020, 1, 13, date_func=date_func): 0.0, }), check_names=False, check_index_type=False, )
def test_mean_1(): s1mask = s1().mask((2, 4)) s2mask = s2().mask((7, 9)) pd.testing.assert_series_equal( sc.mean([s1mask, s2mask]).step_values, pd.Series({ -4.0: -0.875, -2.0: -1.75, 1.0: -1.125, 2.0: np.nan, 4.0: 1.125, 5.0: 0.75, 6.0: -0.5, 7.0: np.nan, 9.0: -1.5, 10.0: 0.0, 11.0: 2.5, 13.0: 0.0, }), check_names=False, check_index_type=False, )
def test_mean_3(IS1, IS2): pd.testing.assert_series_equal( sc.mean(np.array([IS1, IS2])).step_changes, pd.Series( { -4.0: -0.875, -2.0: -0.875, 1.0: 0.625, 2.0: 2.25, 2.5: -1.25, 3.0: 1.25, 4.0: 1.25, 5.0: -2.625, 6.0: -1.25, 7.0: 1.25, 8.0: 2.5, 10.0: -2.25, } ), check_names=False, check_index_type=False, )
def test_mean_2(): s1mask = s1().mask((2, 4)) s2mask = s2().mask((7, 9)).mask((None, 0)) result = sc.mean([s1mask, s2mask]) pd.testing.assert_series_equal( result.step_values, pd.Series({ 0.0: -1.75, 1.0: -1.125, 2.0: np.nan, 4.0: 1.125, 5.0: 0.75, 6.0: -0.5, 7.0: np.nan, 9.0: -1.5, 10.0: 0.0, 11.0: 2.5, 13.0: 0.0, }), check_names=False, check_index_type=False, ) assert np.isnan(result.initial_value)