Beispiel #1
0
def main():
    args = parse_args()
    random.seed(args.seed)

    args = vars(args)

    print("[Launching identity lemmatizer...]")

    if args['mode'] == 'train':
        print(
            "[No training is required; will only generate evaluation output...]"
        )

    document = Document(CoNLL.conll2dict(input_file=args['eval_file']))
    batch = DataLoader(document,
                       args['batch_size'],
                       args,
                       evaluation=True,
                       conll_only=True)
    system_pred_file = args['output_file']
    gold_file = args['gold_file']

    # use identity mapping for prediction
    preds = batch.doc.get([TEXT])

    # write to file and score
    batch.doc.set([LEMMA], preds)
    CoNLL.dict2conll(batch.doc.to_dict(), system_pred_file)
    if gold_file is not None:
        _, _, score = scorer.score(system_pred_file, gold_file)

        print("Lemma score:")
        print("{} {:.2f}".format(args['lang'], score * 100))
Beispiel #2
0
def evaluate(args):
    # file paths
    system_pred_file = args['output_file']
    gold_file = args['gold_file']
    model_file = '{}/{}_lemmatizer.pt'.format(args['model_dir'], args['lang'])

    # load model
    use_cuda = args['cuda'] and not args['cpu']
    trainer = Trainer(model_file=model_file, use_cuda=use_cuda)
    loaded_args, vocab = trainer.args, trainer.vocab

    for k in args:
        if k.endswith('_dir') or k.endswith('_file') or k in ['shorthand']:
            loaded_args[k] = args[k]

    # laod data
    print("Loading data with batch size {}...".format(args['batch_size']))
    doc = Document(CoNLL.conll2dict(input_file=args['eval_file']))
    batch = DataLoader(doc,
                       args['batch_size'],
                       loaded_args,
                       vocab=vocab,
                       evaluation=True)

    # skip eval if dev data does not exist
    if len(batch) == 0:
        print("Skip evaluation because no dev data is available...")
        print("Lemma score:")
        print("{} ".format(args['lang']))
        sys.exit(0)

    dict_preds = trainer.predict_dict(batch.doc.get([TEXT, UPOS]))

    if loaded_args.get('dict_only', False):
        preds = dict_preds
    else:
        print("Running the seq2seq model...")
        preds = []
        edits = []
        for i, b in enumerate(batch):
            ps, es = trainer.predict(b, args['beam_size'])
            preds += ps
            if es is not None:
                edits += es
        preds = trainer.postprocess(batch.doc.get([TEXT]), preds, edits=edits)

        if loaded_args.get('ensemble_dict', False):
            print("[Ensembling dict with seq2seq lemmatizer...]")
            preds = trainer.ensemble(batch.doc.get([TEXT, UPOS]), preds)

    # write to file and score
    batch.doc.set([LEMMA], preds)
    CoNLL.dict2conll(batch.doc.to_dict(), system_pred_file)
    if gold_file is not None:
        _, _, score = scorer.score(system_pred_file, gold_file)

        print("Lemma score:")
        print("{} {:.2f}".format(args['lang'], score * 100))
Beispiel #3
0
def train(args):
    # load data
    print("[Loading data with batch size {}...]".format(args['batch_size']))
    train_doc = Document(CoNLL.conll2dict(input_file=args['train_file']))
    train_batch = DataLoader(train_doc,
                             args['batch_size'],
                             args,
                             evaluation=False)
    vocab = train_batch.vocab
    args['vocab_size'] = vocab['char'].size
    args['pos_vocab_size'] = vocab['pos'].size
    dev_doc = Document(CoNLL.conll2dict(input_file=args['eval_file']))
    dev_batch = DataLoader(dev_doc,
                           args['batch_size'],
                           args,
                           vocab=vocab,
                           evaluation=True)

    utils.ensure_dir(args['model_dir'])
    model_file = '{}/{}_lemmatizer.pt'.format(args['model_dir'], args['lang'])

    # pred and gold path
    system_pred_file = args['output_file']
    gold_file = args['gold_file']

    utils.print_config(args)

    # skip training if the language does not have training or dev data
    if len(train_batch) == 0 or len(dev_batch) == 0:
        print("[Skip training because no data available...]")
        sys.exit(0)

    # start training
    # train a dictionary-based lemmatizer
    trainer = Trainer(args=args, vocab=vocab, use_cuda=args['cuda'])
    print("[Training dictionary-based lemmatizer...]")
    trainer.train_dict(train_batch.doc.get([TEXT, UPOS, LEMMA]))
    print("Evaluating on dev set...")
    dev_preds = trainer.predict_dict(dev_batch.doc.get([TEXT, UPOS]))
    dev_batch.doc.set([LEMMA], dev_preds)
    CoNLL.dict2conll(dev_batch.doc.to_dict(), system_pred_file)
    _, _, dev_f = scorer.score(system_pred_file, gold_file)
    print("Dev F1 = {:.2f}".format(dev_f * 100))

    if args.get('dict_only', False):
        # save dictionaries
        trainer.save(model_file)
    else:
        # train a seq2seq model
        print("[Training seq2seq-based lemmatizer...]")
        global_step = 0
        max_steps = len(train_batch) * args['num_epoch']
        dev_score_history = []
        best_dev_preds = []
        current_lr = args['lr']
        global_start_time = time.time()
        format_str = '{}: step {}/{} (epoch {}/{}), loss = {:.6f} ({:.3f} sec/batch), lr: {:.6f}'

        # start training
        for epoch in range(1, args['num_epoch'] + 1):
            train_loss = 0
            for i, batch in enumerate(train_batch):
                start_time = time.time()
                global_step += 1
                loss = trainer.update(batch, eval=False)  # update step
                train_loss += loss
                if global_step % args['log_step'] == 0:
                    duration = time.time() - start_time
                    print(format_str.format(datetime.now().strftime("%Y-%m-%d %H:%M:%S"), global_step,\
                            max_steps, epoch, args['num_epoch'], loss, duration, current_lr))

            # eval on dev
            print("Evaluating on dev set...")
            dev_preds = []
            dev_edits = []
            for i, batch in enumerate(dev_batch):
                preds, edits = trainer.predict(batch, args['beam_size'])
                dev_preds += preds
                if edits is not None:
                    dev_edits += edits
            dev_preds = trainer.postprocess(dev_batch.doc.get([TEXT]),
                                            dev_preds,
                                            edits=dev_edits)

            # try ensembling with dict if necessary
            if args.get('ensemble_dict', False):
                print("[Ensembling dict with seq2seq model...]")
                dev_preds = trainer.ensemble(dev_batch.doc.get([TEXT, UPOS]),
                                             dev_preds)
            dev_batch.doc.set([LEMMA], dev_preds)
            CoNLL.dict2conll(dev_batch.doc.to_dict(), system_pred_file)
            _, _, dev_score = scorer.score(system_pred_file, gold_file)

            train_loss = train_loss / train_batch.num_examples * args[
                'batch_size']  # avg loss per batch
            print("epoch {}: train_loss = {:.6f}, dev_score = {:.4f}".format(
                epoch, train_loss, dev_score))

            # save best model
            if epoch == 1 or dev_score > max(dev_score_history):
                trainer.save(model_file)
                print("new best model saved.")
                best_dev_preds = dev_preds

            # lr schedule
            if epoch > args['decay_epoch'] and dev_score <= dev_score_history[-1] and \
                    args['optim'] in ['sgd', 'adagrad']:
                current_lr *= args['lr_decay']
                trainer.update_lr(current_lr)

            dev_score_history += [dev_score]
            print("")

        print("Training ended with {} epochs.".format(epoch))

        best_f, best_epoch = max(dev_score_history) * 100, np.argmax(
            dev_score_history) + 1
        print("Best dev F1 = {:.2f}, at epoch = {}".format(best_f, best_epoch))