import numpy as np import pandas from star import Stark if __name__ == '__main__' : np.random.seed() df = pandas.DataFrame({ 'YEAR': pandas.to_datetime( [str(year) for year in np.arange(2005, 2013)] * 3) , 'XER': ['ITA'] * 8 + ['FRA'] * 8 + ['DEU'] * 8, 'X': np.random.randn(24), 'K': np.random.randn(24), }) stk = Stark(df) stk.md['vars']['YEAR']['type'] = 'D' stk.md['vars']['XER']['type'] = 'D' stk.md['vars']['X']['type'] = 'N' stk.md['vars']['K']['type'] = 'N' stk['OUT'] = '$X / $K * 1000' stk.cagr('X') stk.cagr('OUT') stk.logit('K') df1 = pandas.DataFrame({ 'XER': ['ITA', 'FRA', 'ESP'], 'K': np.random.randn(3), 'Q': np.random.randn(3), })
# -*- coding: utf-8 -*- # pylint: disable=W0212 import numpy as np import pandas import star from star import Stark if __name__ == '__main__' : df = pandas.DataFrame({ 'YEAR': pandas.to_datetime([str(year) for year in np.arange(1995, 2013)]), 'XER': ['ITA', 'FRA', 'DEU'] * 6, 'X': np.random.randn(18), 'K': np.random.randn(18), }) stk = Stark(df) stk._md['vars']['YEAR']['type'] = 'D' stk._md['vars']['XER']['type'] = 'D' stk._md['vars']['X']['type'] = 'N' stk._md['vars']['K']['type'] = 'N' stk['OUT'] = '$X / $K * 1000' out = stk.rollup(YEAR='TOT')['OUT'] assert(type(out._md) is star.share.meta_dict.Meta) assert(type(out._md['vars']) is star.share.meta_dict.MetaVars) assert(type(out._md['vars']['OUT']) is star.share.meta_dict.MetaVarsAttr,) assert(type(out._md['graph']) is star.share.meta_dict.MetaGraph) assert(type(out._md['graph']['vars']) is star.share.meta_dict.MetaVarsGraph) # assert(type(out._md['graph']['vars']['OUT']) is star.share.meta_dict.MetaVarsAttrGraph)