Beispiel #1
0
def relion_star_downgrade(star_file):
    """Downgrade RELION 3.1 STAR file to RELION 3.0 format for Warp
    """
    star = starfile.read(star_file)

    # Merge optics info into particles dataframe
    data = star['particles'].merge(star['optics'])

    # Get necessary data from 3.1 style star file
    # (RELION 3.0 style expected by warp for particle extraction)
    xyz_headings = [f'rlnCoordinate{axis}' for axis in 'XYZ']
    shift_headings = [f'rlnOrigin{axis}Angst' for axis in 'XYZ']
    euler_headings = [f'rlnAngle{euler}' for euler in ('Rot', 'Tilt', 'Psi')]

    xyz = data[xyz_headings].to_numpy()
    shifts_ang = data[shift_headings].to_numpy()
    pixel_size = data['rlnImagePixelSize'].to_numpy().reshape((-1, 1))
    eulers = data[euler_headings].to_numpy()
    data_out = {}
    data_out['rlnMicrographName'] = data['rlnMicrographName']

    # Get shifts in pixels (RELION 3.0 style)
    shifts_px = shifts_ang / pixel_size

    # update XYZ positions
    xyz_shifted = xyz - shifts_px

    # Create output DataFrame
    df = pd.DataFrame.from_dict(data_out, orient='columns')
    for idx in range(3):
        df[xyz_headings[idx]] = xyz_shifted[:, idx]

    for idx in range(3):
        df[euler_headings[idx]] = eulers[:, idx]

    # Derive output filename
    star_file = Path(star_file)
    stem = star_file.stem
    output_filename = star_file.parent / (str(stem) + '_rln3.0.star')

    # Write output
    starfile.write(df, output_filename, overwrite=True)
    click.echo(f'Done! Wrote RELION 3.0 format STAR file to {output_filename}')
    return
Beispiel #2
0
def read_star(star_path, **kwargs):
    """
    Dispatch function for reading a starfile into one or multiple ParticleBlocks
    """
    try:
        raw_data = starfile.read(star_path, always_dict=True)
    except pd.errors.EmptyDataError:  # raised sometimes by .star files with completely different data
        raise ParseError(f'the contents of {star_path} have the wrong format')

    failed_reader_functions = []
    for style, reader_function in reader_functions.items():
        try:
            particle_blocks = reader_function(raw_data,
                                              star_path=star_path,
                                              **kwargs)
            return particle_blocks
        except ParseError:
            failed_reader_functions.append((style, reader_function))
    raise ParseError(
        f'Failed to parse {star_path} using {failed_reader_functions}')
def get_dist(fileIn):

    with open(fileIn, 'r') as f_in:
        lines = islice(f_in, line_start, line_end)
        data = [line.strip() for line in lines]
        data_header = []
        data_body = []
        for i in data:
            if i == 'loop_':
                continue
            if i.startswith('_rln'):
                data_header.append(i)
            else:
                data_body.append(i)
    data_body = list(filter(None, data_body))
    data = [x.split() for x in data_body]
    return(data)

df = starfile.read(data_star_file)
particle_number = df['particles']['rlnMicrographName'].shape[0]

for index, model_file in enumerate(model_star_files):
    print("\n")
    print(colored("ITERATION -------->",'red'), colored(index,'green'))
    line_start, line_end = line_numbers(model_file)
    data = get_dist(model_file)
    for k in range(len(data)):
        percentage = float(data[k][1])*100
        pcles_in_class = round(float(data[k][1])*particle_number)
        print("{} :========> {:.2f} % | ~{} particles".format(data[k][0], percentage,pcles_in_class))
 def test_read_non_existent_file(self):
     f = Path('non-existent-file.star')
     assert f.exists() is False
     starfile.read(f)
Beispiel #5
0
def read_cbox(cbox_path, name_regex=None, pixel_size=None, **kwargs):
    data = starfile.read(cbox_path)['cryolo']
    coords = data[[f'Coordinate{axis}' for axis in 'XYZ']].to_numpy()
    orientations = np.tile(np.identity(3), (len(data), 1, 1))
    name = guess_name(cbox_path, name_regex)
    return ParticleBlock(coords, orientations, name=name, pixel_size=pixel_size)
Beispiel #6
0
def warp2dynamo(warp_star_file, output_dynamo_table_file, extracted_box_size):
    """
    Converts a Warp STAR file into a Dynamo table file.
    Outputs a few things
    1) dynamo table and corresponding table map (.doc)
    2) dynamo STAR file as data container (to avoid reextraction)
    3) a separate table for reextraction as a dynamo data folder
    (STAR container didn't work in my hands for alignment projects)
    """
    # Read STAR file
    relion_star = starfile.read(warp_star_file)

    # Initialise empty dict for dynamo
    dynamo_data = {}

    # Get XYZ positions and put into data
    for axis in ('x', 'y', 'z'):
        relion_heading = 'rlnCoordinate' + axis.upper()
        dynamo_data[axis] = relion_star[relion_heading]

    # Get euler angles and convert to dynamo convention (only if eulers present in STAR file)
    if 'rlnAngleRot' in relion_star.columns:
        eulers_relion = relion_star[['rlnAngleRot', 'rlnAngleTilt', 'rlnAnglePsi']].to_numpy()
        eulers_dynamo = convert_eulers(eulers_relion,
                                       source_meta='relion',
                                       target_meta='dynamo')

        dynamo_data['tdrot'] = eulers_dynamo[:, 0]
        dynamo_data['tilt'] = eulers_dynamo[:, 1]
        dynamo_data['narot'] = eulers_dynamo[:, 2]

    # Add tomogram info
    dynamo_data['tomo_file'] = relion_star['rlnMicrographName']

    # Convert to DataFrame
    df = pd.DataFrame.from_dict(dynamo_data)

    # Write table file
    output_dynamo_table_file = sanitise_dynamo_table_filename(output_dynamo_table_file)
    click.echo(
        f"Writing out Dynamo table file '{output_dynamo_table_file}' and corresponding table map file with appropriate info...\n")
    dynamotable.write(df, output_dynamo_table_file)

    # Write out dynamo STAR file to avoid reextraction
    dynamo_star_name = output_dynamo_table_file + '.star'
    click.echo(
        f"Writing out Dynamo format STAR file '{dynamo_star_name}' to avoid reextraction...\n")

    tags = [x + 1 for x in range(df.shape[0])]
    particle_files = relion_star['rlnImageName']
    dynamo_star = {'tag': tags,
                   'particleFile': particle_files}
    dynamo_star = pd.DataFrame.from_dict(dynamo_star)

    starfile.write(dynamo_star, dynamo_star_name)

    # Write out reextraction table and .doc file (STAR files with mrc volumes didn't work in dynamo 1.1.509 in my hands)
    # Get extraction table name
    reextraction_table_name = reextract_table_filename(output_dynamo_table_file)

    # Change xyz positions to match centers of extracted boxes
    for axis in ('x', 'y', 'z'):
        df[axis] = np.ones_like(df[axis]) * (extracted_box_size / 2)

    # Change tomo_file to point to individual particles and make tomo equal to tags
    df['tomo_file'] = relion_star['rlnImageName']
    df['tomo'] = dynamo_star['tag']

    # Write
    click.echo(
        f"Writing out table and table map to facilitate reextraction if dynamo STAR file doesn't work...")
    click.echo(
        f"General reextraction command: dtcrop <tomogram_table_map.doc> <tableForAllTomograms>  <outputfolder> <sidelength> -asBoxes 1")
    extraction_command = f"dtcrop {reextraction_table_name.replace('.tbl', '.doc')} {reextraction_table_name}  <outputfolder> {extracted_box_size} -asBoxes 1"

    reextraction_matlab = output_dynamo_table_file.replace('.tbl', 'reextraction_script.m')
    with open(reextraction_matlab, 'w') as f:
        f.write(f'{extraction_command}\n')
    dynamotable.write(df, reextraction_table_name)

    click.echo(f"\nDone! Converted Warp output '{warp_star_file}' into Dynamo input files")
    return