Beispiel #1
0
class DialogEnv(gym.Env):
    def __init__(
        self,
        user_goals: List[UserGoal],
        emc_params: Dict,
        max_round_num: int,
        database: Dict,
        slot2values: Dict[str, List[Any]],
    ) -> None:

        self.user = UserSimulator(user_goals, max_round_num)
        self.emc = ErrorModelController(slot2values, emc_params)
        self.state_tracker = StateTracker(database, max_round_num)

        self.action_space = gym.spaces.Discrete(len(AGENT_ACTIONS))
        self.observation_space = gym.spaces.multi_binary.MultiBinary(
            self.state_tracker.get_state_size())

    def step(self, agent_action_index: int):
        agent_action = map_index_to_action(agent_action_index)
        self.state_tracker.update_state_agent(agent_action)
        user_action, reward, done, success = self.user.step(agent_action)
        if not done:
            self.emc.infuse_error(user_action)
        self.state_tracker.update_state_user(user_action)
        next_state = self.state_tracker.get_state(done)
        return next_state, reward, done, success

    def reset(self):
        self.state_tracker.reset()
        init_user_action = self.user.reset()
        self.emc.infuse_error(init_user_action)
        self.state_tracker.update_state_user(init_user_action)
        return self.state_tracker.get_state()
    # Load movie dict
    db_dict = pickle.load(open(DICT_FILE_PATH, 'rb'), encoding='latin1')

    # Load goal File
    user_goals = pickle.load(open(USER_GOALS_FILE_PATH, 'rb'),
                             encoding='latin1')

    # Init. Objects
    if USE_USERSIM:
        user = UserSimulator(user_goals, constants, database)
    else:
        user = User(constants)
    emc = ErrorModelController(db_dict, constants)
    state_tracker = StateTracker(database, constants)
    sarsa_agent = SARSAgent(state_tracker.get_state_size(), constants)
    #dqn_agent = DQNAgent(state_tracker.get_state_size(), constants)


def run_round(state, warmup=False):
    # 1) Agent takes action given state tracker's representation of dialogue (state)
    agent_action_index, agent_action = sarsa_agent.get_action(state,
                                                              use_rule=warmup)
    # 2) Update state tracker with the agent's action
    state_tracker.update_state_agent(agent_action)
    # 3) User takes action given agent action
    user_action, reward, done, success = user.step(agent_action)
    if not done:
        # 4) Infuse error into semantic frame level of user action
        emc.infuse_error(user_action)
    # 5) Update state tracker with user action
Beispiel #3
0
    # Load movie dict
    db_dict = pickle.load(open(DICT_FILE_PATH, 'rb'), encoding='latin1')

    # Load goal File
    user_goals = pickle.load(open(USER_GOALS_FILE_PATH, 'rb'),
                             encoding='latin1')

    # Init. Objects
    if USE_USERSIM:
        user = UserSimulator(user_goals, constants, database)
    else:
        user = User(constants)
    emc = ErrorModelController(db_dict, constants)
    state_tracker = StateTracker(database, constants)
    dqn_agent = DuellingQNetworkAgent(state_tracker.get_state_size(),
                                      constants)


def run_round(state, warmup=False):
    # 1) Agent takes action given state tracker's representation of dialogue (state)
    agent_action_index, agent_action = dqn_agent.get_action(state,
                                                            use_rule=warmup)
    # 2) Update state tracker with the agent's action
    state_tracker.update_state_agent(agent_action)
    # 3) User takes action given agent action
    user_action, reward, done, success = user.step(agent_action)
    if not done:
        # 4) Infuse error into semantic frame level of user action
        emc.infuse_error(user_action)
    # 5) Update state tracker with user action
Beispiel #4
0
    # Load movie dict
    # db_dict = pickle.load(open(DICT_FILE_PATH, 'rb'), encoding='latin1')
    db_dict = json.load(open(DICT_FILE_PATH, encoding='utf-8'))[0]

    # Load goal file
    # user_goals = pickle.load(open(USER_GOALS_FILE_PATH, 'rb'), encoding='latin1')
    user_goals = json.load(open(USER_GOALS_FILE_PATH, encoding='utf-8'))

    # Init. Objects
    if USE_USERSIM:
        user = UserSimulator(user_goals, constants, database)
    else:
        user = User(constants)
    emc = ErrorModelController(db_dict, constants)
    state_tracker = StateTracker(database, constants)
    dqn_agent = DQNAgent(state_tracker.get_state_size(), constants)


def test_run():
    """
    Runs the loop that tests the agent.

    Tests the agent on the goal-oriented chatbot task. Only for evaluating a trained agent. Terminates when the episode
    reaches NUM_EP_TEST.

    """

    print('Testing Started...')
    episode = 0
    while episode < NUM_EP_TEST:
        episode_reset()
Beispiel #5
0
    db_dict = pickle.load(open(DICT_FILE_PATH, 'rb'), encoding='latin1')

    # Load goal File
    user_goals = pickle.load(open(USER_GOALS_FILE_PATH, 'rb'),
                             encoding='latin1')

    # Init. Objects
    if USE_USERSIM:
        user = UserSimulator(user_goals, constants, database)
    else:
        user = User(constants)
    emc = ErrorModelController(db_dict, constants)
    state_tracker = StateTracker(database, constants)
    # sarsa_agent = SARSAgent(state_tracker.get_state_size(), constants)
    sess = K.get_session()
    ac_agent = ActorCritic(state_tracker.get_state_size(), constants, sess)
    #dqn_agent = DQNAgent(state_tracker.get_state_size(), constants)


def run_round(state, warmup=False):
    # 1) Agent takes action given state tracker's representation of dialogue (state)
    agent_action = ac_agent.act(state)
    # 2) Update state tracker with the agent's action
    state_tracker.update_state_agent(agent_action)
    # 3) User takes action given agent action
    user_action, reward, done, success = user.step(agent_action)
    if not done:
        # 4) Infuse error into semantic frame level of user action
        emc.infuse_error(user_action)
    # 5) Update state tracker with user action
    state_tracker.update_state_user(user_action)
Beispiel #6
0
    # Load movie dict
    db_dict = pickle.load(open(DICT_FILE_PATH, 'rb'), encoding='latin1')

    # Load goal File
    user_goals = pickle.load(open(USER_GOALS_FILE_PATH, 'rb'),
                             encoding='latin1')

    # Init. Objects
    if USE_USERSIM:
        user = UserSimulator(user_goals, constants, database)
    else:
        user = User(constants)
    emc = ErrorModelController(db_dict, constants)
    state_tracker = StateTracker(database, constants)
    acm = AdvantageACM(state_tracker.get_state_size(), constants)


def run_round(state, Agent_Actions, User_Actions, tot_slt_len, stp, q, warmup):
    u_r = 0  ##User Repeatition
    a_r = 0  ##Agent Repeatition
    a_q = 0  ##Agent Question
    u_q = q  ##User Question
    pen = 0  ##User asked Question Agent replied Question
    # 1) Agent takes action given state tracker's representation of dialogue (state)
    agent_action_index, agent_action = acm.act(state, warmup)
    print('Agent Action_Index:', agent_action_index)
    #print('Agent_Action:',agent_action)
    if (agent_action['intent'] == 'request'):
        a_q = 1
    if (agent_action_index in Agent_Actions):
Beispiel #7
0
    # Load movie dict
    db_dict = pickle.load(open(DICT_FILE_PATH, 'rb'), encoding='latin1')

    # Load goal File
    user_goals = pickle.load(open(USER_GOALS_FILE_PATH, 'rb'),
                             encoding='latin1')

    # Init. Objects
    if USE_USERSIM:
        user = UserSimulator(user_goals, constants, database)
    else:
        user = User(constants)
    emc = ErrorModelController(db_dict, constants)
    state_tracker = StateTracker(database, constants)
    dqn_agent = DRQNAgent(
        state_tracker.get_state_size(),
        constants)  # the variable dqn agent is intialized to a DRQN agent


def run_round(states, warmup=False):
    # 1) Agent takes action given state tracker's representation of dialogue (state)
    #print(states[0].shape)
    if len(states) > 3:
        state_1 = np.stack((states[-4], states[-3], states[-2], states[-1]),
                           axis=0)
    else:
        state_1 = np.vstack((np.zeros(
            (4 - len(states), 224)), np.array(states)))
    agent_action_index, agent_action = dqn_agent.get_action(state_1,
                                                            use_rule=warmup)
    # 2) Update state tracker with the agent's action