Beispiel #1
0
def two_dim_wright_fisher_figure(N, m, mu=0.01, incentive_func=replicator):
    """
    Plot relative entropies and stationary distribution for the Wright-Fisher
    process.
    """

    n = len(m[0])
    fitness_landscape = linear_fitness_landscape(m)
    incentive = incentive_func(fitness_landscape)
    if not mu:
        mu = 1. / N

    edge_func = wright_fisher.multivariate_transitions(N,
                                                       incentive,
                                                       mu=mu,
                                                       num_types=n)
    states = list(simplex_generator(N, d=n - 1))
    s = stationary_distribution(edge_func, states=states, iterations=4 * N)
    s0 = expected_divergence(edge_func, states=states, q_d=0)
    s1 = expected_divergence(edge_func, states=states, q_d=1)

    # Set up plots
    gs = gridspec.GridSpec(2, 1)

    ax2 = pyplot.subplot(gs[0, 0])
    ax2.set_title("Relative Entropy")
    plot_dictionary(s0, ax=ax2)
    plot_dictionary(s1, ax=ax2)

    ax3 = pyplot.subplot(gs[1, 0])
    ax3.set_title("Stationary Distribution")
    plot_dictionary(s, ax=ax3)
    ax3.set_xlabel("Number of A individuals (i)")
Beispiel #2
0
def two_dim_wright_fisher_figure(N, m, mu=0.01, incentive_func=replicator):
    """
    Plot relative entropies and stationary distribution for the Wright-Fisher
    process.
    """

    n = len(m[0])
    fitness_landscape = linear_fitness_landscape(m)
    incentive = incentive_func(fitness_landscape)
    if not mu:
        mu = 1./ N

    edge_func = wright_fisher.multivariate_transitions(N, incentive, mu=mu, num_types=n)
    states = list(simplex_generator(N, d=n-1))
    s = stationary_distribution(edge_func, states=states, iterations=4*N)
    s0 = expected_divergence(edge_func, states=states, q_d=0)
    s1 = expected_divergence(edge_func, states=states, q_d=1)

    # Set up plots
    gs = gridspec.GridSpec(2, 1)

    ax2 = pyplot.subplot(gs[0, 0])
    ax2.set_title("Relative Entropy")
    plot_dictionary(s0, ax=ax2)
    plot_dictionary(s1, ax=ax2)

    ax3 = pyplot.subplot(gs[1, 0])
    ax3.set_title("Stationary Distribution")
    plot_dictionary(s, ax=ax3)
    ax3.set_xlabel("Number of A individuals (i)")
def test_extrema_wf(lim=1e-10):
    """
    For small mu, the Wright-Fisher process is minimal in the center.
    Test that this happens.
    """

    for n, N, mins in [(2, 40, [(20, 20)]), (3, 30, [(10, 10, 10)])]:
        mu = 1. / N**3
        m = numpy.ones((n, n))  # neutral landscape
        fitness_landscape = linear_fitness_landscape(m)
        incentive = replicator(fitness_landscape)

        edge_func = wright_fisher.multivariate_transitions(N,
                                                           incentive,
                                                           mu=mu,
                                                           num_types=n)
        states = list(simplex_generator(N, d=n - 1))
        s = stationary_distribution(edge_func,
                                    states=states,
                                    iterations=4 * N,
                                    lim=lim)
        s2 = expected_divergence(edge_func, states=states, q_d=0)

        assert_equal(find_local_minima(s), set(mins))

        er = entropy_rate(edge_func, s, states=states)
        assert_greater_equal(er, 0)
def test_wright_fisher(N=20, lim=1e-10, n=2):
    """Test 2 dimensional Wright-Fisher process."""
    for n in [2, 3]:
        mu = (n - 1.) / n * 1. / (N + 1)
        m = numpy.ones((n, n))  # neutral landscape
        fitness_landscape = linear_fitness_landscape(m)
        incentive = replicator(fitness_landscape)

        # Wright-Fisher
        for low_memory in [True, False]:
            edge_func = wright_fisher.multivariate_transitions(
                N, incentive, mu=mu, num_types=n, low_memory=low_memory)
            states = list(simplex_generator(N, d=n - 1))
            for logspace in [False, True]:
                s = stationary_distribution(edge_func,
                                            states=states,
                                            iterations=200,
                                            lim=lim,
                                            logspace=logspace)
                wf_edges = edge_func_to_edges(edge_func, states)

                er = entropy_rate(wf_edges, s)
                assert_greater_equal(er, 0)

                # Check that the stationary distribution satistifies balance conditions
                check_detailed_balance(wf_edges, s, places=2)
                check_global_balance(wf_edges, s, places=4)
                check_eigenvalue(wf_edges, s, places=2)
def test_wright_fisher(N=20, lim=1e-10, n=2):
    """Test 2 dimensional Wright-Fisher process."""
    for n in [2, 3]:
        mu = (n - 1.) / n * 1. / (N + 1)
        m = numpy.ones((n, n)) # neutral landscape
        fitness_landscape = linear_fitness_landscape(m)
        incentive = replicator(fitness_landscape)

        # Wright-Fisher
        for low_memory in [True, False]:
            edge_func = wright_fisher.multivariate_transitions(
                N, incentive, mu=mu, num_types=n, low_memory=low_memory)
            states = list(simplex_generator(N, d=n-1))
            for logspace in [False, True]:
                s = stationary_distribution(
                    edge_func, states=states, iterations=200, lim=lim,
                    logspace=logspace)
                wf_edges = edge_func_to_edges(edge_func, states)

                er = entropy_rate(wf_edges, s)
                assert_greater_equal(er, 0)

                # Check that the stationary distribution satistifies balance
                # conditions
                check_detailed_balance(wf_edges, s, places=2)
                check_global_balance(wf_edges, s, places=4)
                check_eigenvalue(wf_edges, s, places=2)
def test_extrema_wf(lim=1e-10):
    """
    For small mu, the Wright-Fisher process is minimal in the center.
    Test that this happens.
    """

    for n, N, mins in [(2, 40, [(20, 20)]), (3, 30, [(10, 10, 10)])]:
        mu = 1. / N ** 3
        m = numpy.ones((n, n)) # neutral landscape
        fitness_landscape = linear_fitness_landscape(m)
        incentive = replicator(fitness_landscape)

        edge_func = wright_fisher.multivariate_transitions(
            N, incentive, mu=mu, num_types=n)
        states = list(simplex_generator(N, d=n-1))
        s = stationary_distribution(
            edge_func, states=states, iterations=4*N, lim=lim)
        assert_equal(find_local_minima(s), set(mins))
        er = entropy_rate(edge_func, s, states=states)
        assert_greater_equal(er, 0)