class Results:
    def __init__(self):
        self.Time = STATISTICS(0., 0.)
        self.Reward = STATISTICS(0., 0.)
        self.DiscountedReturn = STATISTICS(0., 0.)
        self.UndiscountedReturn = STATISTICS(0., 0.)
        self.Steps = STATISTICS(0., 0.)

    def Clear(self):
        self.Time.Clear()
        self.Reward.Clear()
        self.DiscountedReturn.Clear()
        self.UndiscountedReturn.Clear()
        self.Steps.Clear()
Beispiel #2
0
    def __init__(self, simulator):
        self.Simulator = simulator
        self.History = History()
        self.Status = Status()

        self.TreeDepth = 0
        self.tau = 0
        self.PeakTreeDepth = 0

        self.StatTreeDepth = STATISTICS(0, 0)
        self.StatRolloutDepth = STATISTICS(0, 0)
        self.StatTotalReward = STATISTICS(0, 0)

        VNode.NumChildren = self.Simulator.GetNumActions()
        QNode.NumChildren = self.Simulator.GetNumObservations()

        self.Root = self.ExpandNode(self.Simulator.CreateStartState())

        for i in range(0, SearchParams.NumStartState):
            self.Root.BeliefState.AddSample(self.Simulator.CreateRandomStartState())
 def __init__(self):
     self.Time = STATISTICS(0., 0.)
     self.Reward = STATISTICS(0., 0.)
     self.DiscountedReturn = STATISTICS(0., 0.)
     self.UndiscountedReturn = STATISTICS(0., 0.)
     self.Steps = STATISTICS(0., 0.)
Beispiel #4
0
class MCTS:
    UCB_N = 10000
    UCB_n = 100
    UCB = [[0] * UCB_n] * UCB_N
    InitialisedFastUCB = False

    def __init__(self, simulator):
        self.Simulator = simulator
        self.History = History()
        self.Status = Status()

        self.TreeDepth = 0
        self.tau = 0
        self.PeakTreeDepth = 0

        self.StatTreeDepth = STATISTICS(0, 0)
        self.StatRolloutDepth = STATISTICS(0, 0)
        self.StatTotalReward = STATISTICS(0, 0)

        VNode.NumChildren = self.Simulator.GetNumActions()
        QNode.NumChildren = self.Simulator.GetNumObservations()

        self.Root = self.ExpandNode(self.Simulator.CreateRandomStartState())

        for i in range(0, SearchParams.NumStartState):
            self.Root.BeliefState.AddSample(
                self.Simulator.CreateRandomStartState())

#----- Utility functions

    def BeliefState(self):
        return self.Root.Beliefs()

    def GetHistory(self):
        return self.History

    def GetStatus(self):
        return self.Status

    def ClearStatistics(self):
        self.StatTreeDepth.Clear()
        self.StatRolloutDepth.Clear()
        self.StatTotalReward.Clear()
#------

    def ExpandNode(self, state):
        vnode = VNode().Create()
        vnode.Value.Set(0, 0)

        vnode = self.Simulator.Prior(state, self.History, vnode, self.Status)
        return vnode

    def AddSample(self, node, state):
        sample = self.Simulator.Copy(state)
        node.BeliefState.AddSample(sample)
        return node

    @classmethod
    def InitFastUCB(self, exploration):
        if SearchParams.Verbose:
            print("Initialising fast UCB table...")
        for N in range(self.UCB_N):
            for n in range(self.UCB_n):
                if n == 0:
                    self.UCB[N][n] = Infinity
                else:
                    self.UCB[N][n] = exploration * np.sqrt(np.log(N + 1) / n)
        if SearchParams.Verbose:
            print("done")
        self.InitialisedFastUCB = True

    def Update(self, action, observation, reward):
        self.History.Add(action, observation)
        qnode = self.Root.Child(action)
        vnode = qnode.Child(observation)

        beliefs = BeliefState()

        if vnode:
            beliefs.Copy(vnode.BeliefState.Samples, self.Simulator)

        if SearchParams.UseTransforms:
            beliefs = self.AddTransforms(self.Root, beliefs)

        if vnode:
            if not beliefs.Samples and not vnode.BeliefState:
                return False, None

        if not vnode and not beliefs.Samples:
            return False, None

        if SearchParams.Verbose:
            self.Simulator.DisplayBeliefs(beliefs)

        state = 0
        if vnode and vnode.BeliefState.Samples:
            state = vnode.BeliefState.GetSample(0)
        else:
            state = beliefs.GetSample(0)

        newRoot = self.ExpandNode(state)
        newRoot.BeliefState = beliefs
        self.Root = newRoot

        return True, state

    def AddTransforms(self, root, beliefs):
        attempts = 0
        added = 0

        while added < SearchParams.NumTransforms and attempts < SearchParams.MaxAttempts:
            transform = self.CreateTransform()
            if transform:
                beliefs.AddSample(transform)
                added += 1
            attempts += 1

        if SearchParams.Verbose:
            print("Created ", added, " local transformations out of ",
                  attempts, " attempts")

        return beliefs

    def CreateTransform(self):
        state = self.Root.BeliefState.CreateSample(self.Simulator)
        terminal, state, stepObs, stepReward = self.Simulator.Step(
            state,
            self.History.Back().Action)
        if self.Simulator.LocalMove(state, self.History, stepObs, self.Status):
            return state
        self.Simulator.FreeState(state)

    def FastUCB(self, N, n, logN):
        if self.InitialisedFastUCB and N < self.UCB_N and n < self.UCB_n:
            return self.UCB[int(N)][int(n)]

        if n == 0:
            return Infinity
        else:
            return SearchParams.ExplorationConstant * np.sqrt(logN / n)

    def SelectAction(self, state):
        self.UCTSearch()
        return self.GreedyUCB(self.Root, False, softmax=SearchParams.Softmax)

    def Rollout(self, state):
        self.Status.Phase = PHASE.ROLLOUT
        if SearchParams.Verbose:
            print("Starting rollout")

        totalReward = 0.0
        discount = 1.0
        #discount = self.Simulator.GetHyperbolicDiscount(0)
        terminal = False
        numSteps = 0

        while numSteps + self.TreeDepth < SearchParams.MaxDepth and not terminal:
            action = self.Simulator.SelectRandom(state, self.History,
                                                 self.Status)
            terminal, state, observation, reward = self.Simulator.Step(
                state, action)

            if SearchParams.Verbose:
                self.Simulator.DisplayState(state)

            self.History.Add(action,
                             observation,
                             state=self.Simulator.Copy(state))

            totalReward += reward * discount
            discount *= self.Simulator.GetDiscount()
            #discount = self.Simulator.GetHyperbolicDiscount(numSteps + self.TreeDepth)
            numSteps += 1
            self.tau += numSteps

        self.StatRolloutDepth.Add(numSteps)
        if SearchParams.Verbose:
            print("Ending rollout after " + str(numSteps) +
                  " steps, with total reward " + str(totalReward))

        return totalReward

    def UCTSearch(self):
        self.ClearStatistics()
        historyDepth = self.History.Size()
        for n in range(SearchParams.NumSimulations):
            state = self.Root.BeliefState.CreateSample(self.Simulator)
            self.Simulator.Validate(state)
            self.Status.Phase = PHASE.TREE

            if SearchParams.Verbose:
                print("Starting simulation")
                self.Simulator.DisplayState(state)

            self.TreeDepth = 0
            self.PeakTreeDepth = 0
            vnode = self.Root
            totalReward, vnode = self.SimulateV(state, vnode)
            self.Root = vnode

            self.StatTotalReward.Add(totalReward)
            self.StatTreeDepth.Add(self.PeakTreeDepth)

            if SearchParams.Verbose:
                print("Total Reward: ", self.StatTotalReward.Value)
                #self.DisplayValue()

            self.History.Truncate(historyDepth)

    def SimulateV(self, state, vnode):
        action = self.GreedyUCB(vnode, True)

        self.PeakTreeDepth = self.TreeDepth
        if (self.TreeDepth >= SearchParams.MaxDepth):
            return 0.0, vnode

        if self.TreeDepth == 1:
            vnode = self.AddSample(vnode, state)

        qnode = vnode.Child(action)

        totalReward, qnode = self.SimulateQ(state, qnode, action)
        vnode.Children[action] = qnode
        vnode.Value.Add(totalReward)
        vnode = self.AddRave(vnode, totalReward)

        return totalReward, vnode

    def SimulateQ(self, state, qnode, action):
        delayedReward = 0.0

        terminal, state, observation, immediateReward = \
            self.Simulator.Step(state, action)
        assert (observation >= 0
                and observation < self.Simulator.GetNumObservations())
        self.History.Add(action, observation, state=self.Simulator.Copy(state))

        if SearchParams.Verbose:
            self.Simulator.DisplayState(state)

        vnode = qnode.Child(observation)
        if not vnode and not terminal and qnode.Value.GetCount(
        ) >= SearchParams.ExpandCount:
            vnode = self.ExpandNode(state)

        if not terminal:
            self.TreeDepth += 1
            self.tau += 1
            if vnode:
                delayedReward, vnode = self.SimulateV(state, vnode)
                qnode.Children[observation] = vnode
            else:
                delayedReward = self.Rollout(state)
            self.tau -= 1
            self.TreeDepth -= 1

        totalReward = immediateReward + self.Simulator.GetDiscount(
        ) * delayedReward
        #totalReward = immediateReward + self.Simulator.GetHyperbolicDiscount(self.tau + 1.0)
        qnode.Value.Add(totalReward)
        return totalReward, qnode

    def AddRave(self, vnode, totalReward):
        totalDiscount = 1.0
        for t in range(self.TreeDepth, self.History.Size()):
            qnode = vnode.Child(self.History[t].Action)
            if qnode:
                qnode.AMAF.Add(totalReward, totalDiscount)
                vnode.Children[self.History[t].Action] = qnode
                totalDiscount *= SearchParams.RaveDiscount

        return vnode

    def GreedyUCB(self, vnode, ucb, softmax=False):
        besta = []
        bestq = -Infinity
        beta = 1.0 / 3.0

        N = vnode.Value.GetCount()
        logN = np.log(N + 1)

        qValues = []
        for action in range(self.Simulator.NumActions):
            qnode = vnode.Child(action)
            if qnode:
                q = qnode.Value.GetValue()
                n = qnode.Value.GetCount()

                if SearchParams.UseRave and qnode.AMAF.GetCount() > 0:
                    n2 = qnode.AMAF.GetCount()
                    beta = n2 / (n + n2 + SearchParams.RaveConstant * n * n2)
                    q = (1.0 - beta) * q + beta * qnode.AMAF.GetValue()

                if ucb:
                    q += self.FastUCB(N, n, logN)

                if q >= bestq:
                    if q > bestq:
                        besta = []
                    bestq = q
                    besta.append(action)

                qValues.append(q)
        assert (besta)

        if softmax:
            tempQ = []
            indices = []
            for i, qValue in enumerate(qValues):
                if qValue > -1 * LargeInteger:
                    tempQ.append(qValue)
                    indices.append(i)

            qValues = np.array(tempQ, dtype=np.float64)
            logsoftmax = qValues - np.log(
                np.sum(np.exp(qValues * beta), axis=0))
            besta = [indices[np.argmax(logsoftmax, axis=0)]]

        return besta[Random(0, len(besta))]

# ----- Display Functions

    def DisplayStatistics(self):
        print("Tree Depth: ", self.StatTreeDepth)
        print("Rollout Depth: ", self.StatRolloutDepth)
        print("Total Reward: ", self.StatTotalReward)

        print("Policy after ", SearchParams.NumSimulations, " simulations")
        self.DisplayPolicy(6)
        print("Values after ", SearchParams.NumSimulations, " simulations")
        self.DisplayValue(6)

    def DisplayPolicy(self, depth):
        print("MCTS Policy: ")
        self.Root.VDisplayPolicy(self.History, depth)

    def DisplayValue(self, depth):
        print("MCTS Value: ")
        self.Root.VDisplayValue(self.History, depth)