Beispiel #1
0
def lowess(x, y, span=SPAN):
    "returns y-values estimated using the lowess function in statsmodels."
    """
    for more see
        statsmodels.nonparametric.smoothers_lowess.lowess
    """
    x, y = map(_plot_friendly, [x, y])
    if _isdate(x[0]):
        x = np.array([i.toordinal() for i in x])
    result = smlowess(np.array(y), np.array(x), frac=span)
    x = pd.Series(result[::, 0])
    y = pd.Series(result[::, 1])
    lower, upper = stats.t.interval(span, len(x), loc=0, scale=2)
    std = np.std(y)
    y1 = pd.Series(lower * std + y)
    y2 = pd.Series(upper * std + y)
    return (y, y1, y2)
Beispiel #2
0
def lowess(x, y, span=SPAN):
    "returns y-values estimated using the lowess function in statsmodels."
    """
    for more see
        statsmodels.nonparametric.smoothers_lowess.lowess
    """
    x, y = map(plot_friendly, [x,y])
    if _isdate(x[0]):
        x = np.array([i.toordinal() for i in x])
    result = smlowess(np.array(y), np.array(x), frac=span)
    x = pd.Series(result[::,0])
    y = pd.Series(result[::,1])
    lower, upper = stats.t.interval(span, len(x), loc=0, scale=2)
    std = np.std(y)
    y1 = pd.Series(lower * std +  y)
    y2 = pd.Series(upper * std +  y)
    return (y, y1, y2)