Beispiel #1
0
def continuous_enrichment(pheno,
                          data,
                          covariate,
                          node_labels='node_name_not_specificed'):
    sub_mask = find_subset(pheno, covariate)
    sub_pheno = pheno.loc[sub_mask]
    sub_data = data[sub_mask, :]
    n_data = sub_data.shape[1]

    results = {key: list() for key in ['node', 'pearson_r', 'p_value']}
    for node_id in range(n_data):
        r, p = stats.pearsonr(sub_pheno[covariate], sub_data[:, node_id])
        # Store the results
        results['node'].append(node_id + 1)
        results['pearson_r'].append(r)
        results['p_value'].append(p)

    results_table = pd.DataFrame(data=results)
    # Correct for multiple comparisons
    (fdr_pass, qval, _, _) = stm(results_table.p_value,
                                 alpha=0.05,
                                 method='fdr_bh')
    results_table['q_value'] = qval
    # Add the node_names
    results_table['node_name'] = node_labels

    return results_table
Beispiel #2
0
def summarize_glm(glm_table, conn_mask, roi_labels):
    out_table = glm_table.copy()
    (fdr_pass, qval, _, _) = stm(glm_table.pvals, alpha=0.05, method='fdr_bh')
    out_table['qval'] = qval
    # Return to matrix form
    stand_beta_table = pd.DataFrame(conn2mat(out_table.stand_betas.values,
                                             conn_mask),
                                    index=roi_labels,
                                    columns=roi_labels)
    qval_table = pd.DataFrame(conn2mat(out_table.pvals.values, conn_mask),
                              index=roi_labels,
                              columns=roi_labels)
    return out_table, stand_beta_table, qval_table
Beispiel #3
0
        # Determine if cases > controls or reverse
        case_gt_con = u_right > u_min
        if not case_gt_con:
            r_b = -r_b
        # Store the results
        results['node'].append(node_id + 1)
        results['U'].append(u_min)
        results['p_value'].append(p)
        results[f'median_{group}_{case}'].append(median_case)
        results[f'median_{group}_{control}'].append(median_control)
        results['rank_biserial_correlation'].append(r_b)

    results_table = pd.DataFrame(data=results)
    # Correct for multiple comparisons
    (fdr_pass, qval, _, _) = stm(results_table.p_value,
                                 alpha=0.05,
                                 method='fdr_bh')
    results_table['q_value'] = qval
    # Add the node_names
    results_table['node_name'] = node_labels

    return results_table


def continuous_enrichment(pheno,
                          data,
                          covariate,
                          node_labels='node_name_not_specificed'):
    sub_mask = find_subset(pheno, covariate)
    sub_pheno = pheno.loc[sub_mask]
    sub_data = data[sub_mask, :]