def test_power_ztost_prop():
    power = smprop.power_ztost_prop(0.1, 0.9, 10, p_alt=0.6, alpha=0.05,
                         discrete=True, dist='binom')[0]
    assert_almost_equal(power, 0.8204, decimal=4) # PASS example

    power = smprop.power_ztost_prop(0.4, 0.6, np.arange(20, 210, 20),
                                    p_alt=0.5, alpha=0.05, discrete=False,
                                    dist='binom')[0]

    res_power = np.array([ 0., 0., 0., 0.0889, 0.2356, 0.4770, 0.5530,
        0.6154,  0.7365,  0.7708])
    # TODO: I currently don't impose power>=0, i.e np.maximum(power, 0)
    assert_almost_equal(np.maximum(power, 0), res_power, decimal=4)

    # with critval_continuity correction
    power = smprop.power_ztost_prop(0.4, 0.6, np.arange(20, 210, 20),
                                    p_alt=0.5, alpha=0.05, discrete=False,
                                    dist='binom', variance_prop=None,
                                    continuity=2, critval_continuity=1)[0]

    res_power = np.array([0., 0., 0., 0.0889, 0.2356, 0.3517, 0.4457,
                          0.6154, 0.6674, 0.7708])
    # TODO: I currently don't impose power>=0, i.e np.maximum(power, 0)
    assert_almost_equal(np.maximum(power, 0), res_power, decimal=4)

    power = smprop.power_ztost_prop(0.4, 0.6, np.arange(20, 210, 20),
                                    p_alt=0.5, alpha=0.05, discrete=False,
                                    dist='binom', variance_prop=0.5,
                                    critval_continuity=1)[0]

    res_power = np.array([0., 0., 0., 0.0889, 0.2356, 0.3517, 0.4457,
                          0.6154, 0.6674, 0.7112])
    # TODO: I currently don't impose power>=0, i.e np.maximum(power, 0)
    assert_almost_equal(np.maximum(power, 0), res_power, decimal=4)
Beispiel #2
0
def test_power_ztost_prop():
    power = smprop.power_ztost_prop(0.1,
                                    0.9,
                                    10,
                                    p_alt=0.6,
                                    alpha=0.05,
                                    discrete=True,
                                    dist='binom')[0]
    assert_almost_equal(power, 0.8204, decimal=4)  # PASS example

    with warnings.catch_warnings():  # python >= 2.6
        warnings.simplefilter("ignore", HypothesisTestWarning)
        power = smprop.power_ztost_prop(0.4,
                                        0.6,
                                        np.arange(20, 210, 20),
                                        p_alt=0.5,
                                        alpha=0.05,
                                        discrete=False,
                                        dist='binom')[0]

        res_power = np.array([
            0., 0., 0., 0.0889, 0.2356, 0.4770, 0.5530, 0.6154, 0.7365, 0.7708
        ])
        # TODO: I currently do not impose power>=0, i.e np.maximum(power, 0)
        assert_almost_equal(np.maximum(power, 0), res_power, decimal=4)

        # with critval_continuity correction
        power = smprop.power_ztost_prop(0.4,
                                        0.6,
                                        np.arange(20, 210, 20),
                                        p_alt=0.5,
                                        alpha=0.05,
                                        discrete=False,
                                        dist='binom',
                                        variance_prop=None,
                                        continuity=2,
                                        critval_continuity=1)[0]

        res_power = np.array([
            0., 0., 0., 0.0889, 0.2356, 0.3517, 0.4457, 0.6154, 0.6674, 0.7708
        ])
        # TODO: I currently do not impose power>=0, i.e np.maximum(power, 0)
        assert_almost_equal(np.maximum(power, 0), res_power, decimal=4)

        power = smprop.power_ztost_prop(0.4,
                                        0.6,
                                        np.arange(20, 210, 20),
                                        p_alt=0.5,
                                        alpha=0.05,
                                        discrete=False,
                                        dist='binom',
                                        variance_prop=0.5,
                                        critval_continuity=1)[0]

        res_power = np.array([
            0., 0., 0., 0.0889, 0.2356, 0.3517, 0.4457, 0.6154, 0.6674, 0.7112
        ])
        # TODO: I currently do not impose power>=0, i.e np.maximum(power, 0)
        assert_almost_equal(np.maximum(power, 0), res_power, decimal=4)
def test_power_ztost_prop_norm():
    # regression test for normal distribution
    # from a rough comparison, the results and variations look reasonable
    power = smprop.power_ztost_prop(0.4, 0.6, np.arange(20, 210, 20),
                                    p_alt=0.5, alpha=0.05, discrete=False,
                                    dist='norm', variance_prop=0.5,
                                    continuity=0, critval_continuity=0)[0]

    res_power = np.array([0., 0., 0., 0.11450013,  0.27752006, 0.41495922,
                          0.52944621,  0.62382638,  0.70092914,  0.76341806])
    # TODO: I currently don't impose power>=0, i.e np.maximum(power, 0)
    assert_almost_equal(np.maximum(power, 0), res_power, decimal=4)

    # regression test for normal distribution
    power = smprop.power_ztost_prop(0.4, 0.6, np.arange(20, 210, 20),
                                    p_alt=0.5, alpha=0.05, discrete=False,
                                    dist='norm', variance_prop=0.5,
                                    continuity=1, critval_continuity=0)[0]

    res_power = np.array([0., 0., 0.02667562,  0.20189793,  0.35099606,
                          0.47608598,  0.57981118,  0.66496683,  0.73427591,
                          0.79026127])
    # TODO: I currently don't impose power>=0, i.e np.maximum(power, 0)
    assert_almost_equal(np.maximum(power, 0), res_power, decimal=4)

    # regression test for normal distribution
    power = smprop.power_ztost_prop(0.4, 0.6, np.arange(20, 210, 20),
                                    p_alt=0.5, alpha=0.05, discrete=True,
                                    dist='norm', variance_prop=0.5,
                                    continuity=1, critval_continuity=0)[0]

    res_power = np.array([0., 0., 0., 0.08902071,  0.23582284, 0.35192313,
                          0.55312718,  0.61549537,  0.66743625,  0.77066806])
    # TODO: I currently don't impose power>=0, i.e np.maximum(power, 0)
    assert_almost_equal(np.maximum(power, 0), res_power, decimal=4)

    # regression test for normal distribution
    power = smprop.power_ztost_prop(0.4, 0.6, np.arange(20, 210, 20),
                                    p_alt=0.5, alpha=0.05, discrete=True,
                                    dist='norm', variance_prop=0.5,
                                    continuity=1, critval_continuity=1)[0]

    res_power = np.array([0., 0., 0., 0.08902071,  0.23582284, 0.35192313,
                          0.44588687,  0.61549537,  0.66743625,  0.71115563])
    # TODO: I currently don't impose power>=0, i.e np.maximum(power, 0)
    assert_almost_equal(np.maximum(power, 0), res_power, decimal=4)

    # regression test for normal distribution
    power = smprop.power_ztost_prop(0.4, 0.6, np.arange(20, 210, 20),
                                    p_alt=0.5, alpha=0.05, discrete=True,
                                    dist='norm', variance_prop=None,
                                    continuity=0, critval_continuity=0)[0]

    res_power = np.array([0., 0., 0., 0., 0.15851942, 0.41611758,
                          0.5010377 ,  0.5708047 ,  0.70328247,  0.74210096])
    # TODO: I currently don't impose power>=0, i.e np.maximum(power, 0)
    assert_almost_equal(np.maximum(power, 0), res_power, decimal=4)
Beispiel #4
0
def test_power_ztost_prop_norm():
    # regression test for normal distribution
    # from a rough comparison, the results and variations look reasonable
    power = smprop.power_ztost_prop(0.4, 0.6, np.arange(20, 210, 20),
                                    p_alt=0.5, alpha=0.05, discrete=False,
                                    dist='norm', variance_prop=0.5,
                                    continuity=0, critval_continuity=0)[0]

    res_power = np.array([0., 0., 0., 0.11450013,  0.27752006, 0.41495922,
                          0.52944621,  0.62382638,  0.70092914,  0.76341806])
    # TODO: I currently don't impose power>=0, i.e np.maximum(power, 0)
    assert_almost_equal(np.maximum(power, 0), res_power, decimal=4)

    # regression test for normal distribution
    power = smprop.power_ztost_prop(0.4, 0.6, np.arange(20, 210, 20),
                                    p_alt=0.5, alpha=0.05, discrete=False,
                                    dist='norm', variance_prop=0.5,
                                    continuity=1, critval_continuity=0)[0]

    res_power = np.array([0., 0., 0.02667562,  0.20189793,  0.35099606,
                          0.47608598,  0.57981118,  0.66496683,  0.73427591,
                          0.79026127])
    # TODO: I currently don't impose power>=0, i.e np.maximum(power, 0)
    assert_almost_equal(np.maximum(power, 0), res_power, decimal=4)

    # regression test for normal distribution
    power = smprop.power_ztost_prop(0.4, 0.6, np.arange(20, 210, 20),
                                    p_alt=0.5, alpha=0.05, discrete=True,
                                    dist='norm', variance_prop=0.5,
                                    continuity=1, critval_continuity=0)[0]

    res_power = np.array([0., 0., 0., 0.08902071,  0.23582284, 0.35192313,
                          0.55312718,  0.61549537,  0.66743625,  0.77066806])
    # TODO: I currently don't impose power>=0, i.e np.maximum(power, 0)
    assert_almost_equal(np.maximum(power, 0), res_power, decimal=4)

    # regression test for normal distribution
    power = smprop.power_ztost_prop(0.4, 0.6, np.arange(20, 210, 20),
                                    p_alt=0.5, alpha=0.05, discrete=True,
                                    dist='norm', variance_prop=0.5,
                                    continuity=1, critval_continuity=1)[0]

    res_power = np.array([0., 0., 0., 0.08902071,  0.23582284, 0.35192313,
                          0.44588687,  0.61549537,  0.66743625,  0.71115563])
    # TODO: I currently don't impose power>=0, i.e np.maximum(power, 0)
    assert_almost_equal(np.maximum(power, 0), res_power, decimal=4)

    # regression test for normal distribution
    power = smprop.power_ztost_prop(0.4, 0.6, np.arange(20, 210, 20),
                                    p_alt=0.5, alpha=0.05, discrete=True,
                                    dist='norm', variance_prop=None,
                                    continuity=0, critval_continuity=0)[0]

    res_power = np.array([0., 0., 0., 0., 0.15851942, 0.41611758,
                          0.5010377 ,  0.5708047 ,  0.70328247,  0.74210096])
    # TODO: I currently don't impose power>=0, i.e np.maximum(power, 0)
    assert_almost_equal(np.maximum(power, 0), res_power, decimal=4)
Beispiel #5
0
2 brown medium 53  2 brown dark   54  2 brown black  13'''

dta0 = np.array(ss.split()).reshape(-1,4)
dta = np.array(map(tuple, dta0.tolist()), dtype=[('Region', int), ('Eyes', 'S6'), ('Hair', 'S6'), ('Count', int)])

xfair = np.repeat([1,0], [228, 762-228])

# comparing to SAS last output at
# http://support.sas.com/documentation/cdl/en/procstat/63104/HTML/default/viewer.htm#procstat_freq_sect028.htm
# confidence interval for tost
ci01 = smw.confint_ztest(xfair, alpha=0.1)
assert_almost_equal(ci01,  [0.2719, 0.3265], 4)
res = smw.ztost(xfair, 0.18, 0.38)

assert_almost_equal(res[1][0], 7.1865, 4)
assert_almost_equal(res[2][0], -4.8701, 4)

nn = np.arange(200, 351)
pow_z = sms.power_ztost_prop(0.5, 0.72, nn, 0.6, alpha=0.05)
pow_bin = sms.power_ztost_prop(0.5, 0.72, nn, 0.6, alpha=0.05, dist='binom')
import matplotlib.pyplot as plt
plt.plot(nn, pow_z[0], label='normal')
plt.plot(nn, pow_bin[0], label='binomial')
plt.legend(loc='lower right')
plt.title('Proportion Equivalence Test: Power as function of sample size')
plt.xlabel('Number of Observations')
plt.ylabel('Power')

plt.show()

dta0 = np.array(ss.split()).reshape(-1, 4)
dta = np.array(lmap(tuple, dta0.tolist()),
               dtype=[('Region', int), ('Eyes', 'S6'), ('Hair', 'S6'),
                      ('Count', int)])

xfair = np.repeat([1, 0], [228, 762 - 228])

# comparing to SAS last output at
# http://support.sas.com/documentation/cdl/en/procstat/63104/HTML/default/viewer.htm#procstat_freq_sect028.htm
# confidence interval for tost
ci01 = smw.confint_ztest(xfair, alpha=0.1)
assert_almost_equal(ci01, [0.2719, 0.3265], 4)
res = smw.ztost(xfair, 0.18, 0.38)

assert_almost_equal(res[1][0], 7.1865, 4)
assert_almost_equal(res[2][0], -4.8701, 4)

nn = np.arange(200, 351)
pow_z = sms.power_ztost_prop(0.5, 0.72, nn, 0.6, alpha=0.05)
pow_bin = sms.power_ztost_prop(0.5, 0.72, nn, 0.6, alpha=0.05, dist='binom')
import matplotlib.pyplot as plt
plt.plot(nn, pow_z[0], label='normal')
plt.plot(nn, pow_bin[0], label='binomial')
plt.legend(loc='lower right')
plt.title('Proportion Equivalence Test: Power as function of sample size')
plt.xlabel('Number of Observations')
plt.ylabel('Power')

plt.show()