Beispiel #1
0
def test_graphsage_apply_1():
    gs = GraphSAGE(
        layer_sizes=[2, 2, 2],
        n_samples=[2, 2, 2],
        bias=False,
        input_dim=2,
        multiplicity=1,
        normalize=None,
        kernel_initializer="ones",
    )

    inp = [keras.Input(shape=(i, 2)) for i in [1, 2, 4, 8]]
    out = gs(inp)
    model = keras.Model(inputs=inp, outputs=out)

    x = [
        np.array([[[1, 1]]]),
        np.array([[[2, 2], [2, 2]]]),
        np.array([[[3, 3], [3, 3], [3, 3], [3, 3]]]),
        np.array([[[4, 4], [4, 4], [4, 4], [4, 4], [5, 5], [5, 5], [5, 5], [5, 5]]]),
    ]
    expected = np.array([[16, 25]])

    actual = model.predict(x)
    assert expected == pytest.approx(actual)

    # Use the node model:
    xinp, xout = gs.in_out_tensors()
    model2 = keras.Model(inputs=xinp, outputs=xout)
    assert pytest.approx(expected) == model2.predict(x)
Beispiel #2
0
def gs_nai_model(num_samples, generator, targets, optimizer, bias, dropout, normalize):
    layer_sizes = [50] * len(num_samples)
    graphsage = GraphSAGE(
        layer_sizes=layer_sizes,
        generator=generator,
        bias=bias,
        dropout=dropout,
        normalize=normalize,
    )
    # Build the model and expose input and output sockets of graphsage, for node pair inputs:
    x_inp, x_out = graphsage.in_out_tensors()
    pred = tf.keras.layers.Dense(units=targets.shape[1], activation="softmax")(x_out)
    model = tf.keras.Model(inputs=x_inp, outputs=pred)

    model.compile(optimizer=optimizer, loss=tf.keras.losses.categorical_crossentropy)

    return model
Beispiel #3
0
def unsup_gs_model(num_samples, generator, optimizer, bias, dropout, normalize):
    layer_sizes = [50] * len(num_samples)
    graphsage = GraphSAGE(
        layer_sizes=layer_sizes,
        generator=generator,
        bias=bias,
        dropout=dropout,
        normalize=normalize,
    )
    # Build the model and expose input and output sockets of graphsage, for node pair inputs:
    x_inp, x_out = graphsage.in_out_tensors()
    prediction = link_classification(
        output_dim=1, output_act="sigmoid", edge_embedding_method="ip"
    )(x_out)
    model = tf.keras.Model(inputs=x_inp, outputs=prediction)

    model.compile(optimizer=optimizer, loss=tf.keras.losses.binary_crossentropy)

    return model