Beispiel #1
0
def DrawModelAxes(vol,
                  graph=None,
                  ax=None,
                  axVis=False,
                  meshColor=None,
                  getLabel=False,
                  mc='b',
                  lc='g',
                  mw=7,
                  lw=0.6,
                  **kwargs):
    """ Draw model with volume with axes set
    ax = axes to draw (a1 or a2 or a3); graph = sd._nodes1 or 2 or 3
    meshColor = None or faceColor e.g. 'g'
    """
    #todo: prevent TypeError: draw() got an unexpected keyword argument mc/lc when not given as required variable
    #todo: *args voor vol in drawModelAxes of **kwargs[key] in functies hieronder
    if ax is None:
        ax = vv.gca()
    ax.MakeCurrent()
    ax.daspect = 1, 1, -1
    ax.axis.axisColor = 1, 1, 1
    ax.bgcolor = 0, 0, 0
    ax.axis.visible = axVis
    vv.xlabel('x (mm)')
    vv.ylabel('y (mm)')
    vv.zlabel('z (mm)')
    if graph is None:
        show_ctvolume(vol, graph, axis=ax, removeStent=False, **kwargs)
        label = pick3d(vv.gca(), vol)
        return label
    if hasattr(graph, 'number_of_edges'):
        if graph.number_of_edges(
        ) == 0:  # get label from picked seeds sd._nodes1
            show_ctvolume(vol, graph, axis=ax, **kwargs)
            label = pick3d(vv.gca(), vol)
            graph.Draw(mc=mc, lc=lc)
            return label
    if not meshColor is None:
        bm = create_mesh(graph, 0.5)  # (argument is strut tickness)
        m = vv.mesh(bm)
        m.faceColor = meshColor  # 'g'
    show_ctvolume(vol, graph, axis=ax, **kwargs)
    graph.Draw(mc=mc, lc=lc)
    if getLabel == True:
        label = pick3d(vv.gca(), vol)
        return label
    else:
        pick3d(vv.gca(), vol)
        return
Beispiel #2
0
def nodeInteraction(model, vol, selected_nodes):
    """ modify edges in dynamic model and make dynamic again
    """
    f = vv.figure()
    vv.clf()
    f.position = 8.00, 30.00, 944.00, 1002.00
    a = vv.gca()
    a.axis.axisColor = 1, 1, 1
    a.axis.visible = False
    a.bgcolor = 0, 0, 0
    a.daspect = 1, 1, -1
    lim = (0, 2500)
    t = vv.volshow(vol, clim=lim, renderStyle='mip')
    pick3d(vv.gca(), vol)
    model.Draw(mc='b', mw=10, lc='g')
    vv.xlabel('x (mm)')
    vv.ylabel('y (mm)')
    vv.zlabel('z (mm)')
    vv.title('User interaction to modify model %s  -  %s' %
             (ptcode[-3:], ctcode))

    t3 = vv.Label(a, 'Edge length: ', fontSize=11, color='c')
    t3.position = 0.1, 55, 0.5, 20
    t3.bgcolor = None
    t3.visible = False

    # create clickable nodes
    node_points = _utils_GUI.interactive_node_points(model, scale=0.6)

    # bind event handlers
    f.eventKeyDown.Bind(lambda event: _utils_GUI.ViewPresets(event, [a]))

    f.eventKeyDown.Bind(on_key)
    for node_point in node_points:
        node_point.eventDoubleClick.Bind(
            lambda event: _utils_GUI.select_node(event, selected_nodes))
    print('')
    print('UP/DOWN = show/hide nodes')
    print('DELETE  = remove edge [select 2 nodes] or pop node [select 1 node]')
    print('s       = additional smooth')
    print('e       = smooth selected edge')
    print('w       = clear selected nodes')
    print('q       = activate "interactiveClusterRemoval"')
    print('ALT     = pop nodes')
    print('ESCAPE  = make model dynamic and save to disk')
    print('')

    return node_points, t3
Beispiel #3
0
def show_surface_and_vol(vol,
                         pp_isosurface,
                         showVol='MIP',
                         clim=(-200, 1000),
                         isoTh=300,
                         climEditor=True):
    """ Show the generated isosurface in original volume
    """
    f = vv.figure()
    ax = vv.gca()
    ax.daspect = 1, 1, -1
    ax.axis.axisColor = 1, 1, 1
    ax.bgcolor = 0, 0, 0
    # show vol and iso vertices
    show_ctvolume(vol,
                  showVol=showVol,
                  isoTh=isoTh,
                  clim=clim,
                  climEditor=climEditor)
    label = pick3d(vv.gca(), vol)
    vv.plot(pp_isosurface, ms='.', ls='', mc='r', alpha=0.2, mw=4)
    a = vv.gca()
    f.eventKeyDown.Bind(lambda event: _utils_GUI.ViewPresets(event, [a]))
    print('------------------------')
    print('Use keys 1, 2, 3, 4 and 5 for preset anatomic views')
    print('Use v for a default zoomed view')
    print('Use x to show and hide axis')
    print('------------------------')

    vv.xlabel('x (mm)')
    vv.ylabel('y (mm)')
    vv.zlabel('z (mm)')

    return label
Beispiel #4
0
def showModel3d(basedir,ptcode, ctcode, cropname='ring', showVol='MIP',
    showmodel=True, graphname='model', **kwargs):
    """ show model and vol in 3d by mip iso or 2D
    graphname 'all' draws all graph models stored in s, if multiple
    """
    s = loadmodel(basedir, ptcode, ctcode, cropname, modelname='modelavgreg')
    vol = loadvol(basedir, ptcode, ctcode, cropname, what='avgreg').vol
    # figure
    f = vv.figure(); vv.clf()
    f.position = 0.00, 22.00,  1920.00, 1018.00
    a = vv.gca()
    a.axis.axisColor = 1,1,1
    a.axis.visible = False
    a.bgcolor = 0,0,0
    a.daspect = 1, 1, -1
    t = show_ctvolume(vol, axis=a, showVol=showVol, removeStent=False, 
                        climEditor=True, **kwargs)
    label = pick3d(a, vol)
    vv.xlabel('x (mm)');vv.ylabel('y (mm)');vv.zlabel('z (mm)')
    if showmodel:
        if graphname == 'all':
            for key in dir(s):
                if key.startswith('model'):
                    s[key].Draw(mc='b', mw = 5, lc='g', alpha = 0.5)
        else:
            s[graphname].Draw(mc='b', mw = 5, lc='g', alpha = 0.5)
            
    vv.title('Model for LSPEAS %s  -  %s' % (ptcode[8:], ctcode))
    
    # f.eventKeyDown.Bind(lambda event: _utils_GUI.RotateView(event, [a], axishandling=False ))
    f.eventKeyDown.Bind(lambda event: _utils_GUI.ViewPresets(event, [a]) )
    
    return f, a, label, s
def drawmodelphasescycles(vol1,
                          model1,
                          modelori1,
                          showVol,
                          isoTh=300,
                          removeStent=False,
                          showmodelavgreg=False,
                          showvol=True,
                          phases=range(10),
                          colors='cgmrcgywmb',
                          meshWithColors=False,
                          stripSizeZ=None,
                          ax=None):
    """ draw model and volume (show optional) at different phases cycle
    """
    if ax is None:
        ax = vv.gca()
    ax.daspect = 1, 1, -1
    ax.axis.axisColor = 0, 0, 0
    ax.bgcolor = 1, 1, 1
    vv.xlabel('x (mm)')
    vv.ylabel('y (mm)')
    vv.zlabel('z (mm)')
    # draw
    t = show_ctvolume(vol1,
                      modelori1,
                      showVol=showVol,
                      removeStent=removeStent,
                      climEditor=True,
                      isoTh=isoTh,
                      clim=clim0,
                      stripSizeZ=stripSizeZ)
    if showmodelavgreg:
        # show model and CT mid cycle
        mw = 5
        for model in model1:
            model.Draw(mc='b', mw=mw, lc='b', alpha=0.5)
        label = pick3d(ax, vol1)
    if not showvol:
        t.visible = False
    # get models in different phases
    for model in model1:
        for phasenr in phases:
            model_phase = get_graph_in_phase(model, phasenr=phasenr)
            if meshWithColors:
                modelmesh1 = create_mesh_with_abs_displacement(model_phase,
                                                               radius=radius,
                                                               dim=dimensions)
                m = vv.mesh(modelmesh1, colormap=vv.CM_JET, clim=clim2)
                #todo: use colormap Viridis or Magma as JET is not linear (https://bids.github.io/colormap/)
            else:
                model_phase.Draw(mc=colors[phasenr], mw=10, lc=colors[phasenr])
        #         modelmesh1 = create_mesh(model_phase, radius = radius)
        #         m = vv.mesh(modelmesh1); m.faceColor = colors[phasenr]
    if meshWithColors:
        vv.colorbar()
    return ax
Beispiel #6
0
def remove_nodes_by_selected_point(graph,
                                   vol,
                                   axes,
                                   label,
                                   clim,
                                   location='posterior',
                                   **kwargs):
    """ removes nodes and edges in graph. Graph is separated by coord of selected point
    use location to define what to remove, e.g. posterior to remove nodes in spine
    Input : graph, axes, label of selected point, 
            dimension how to separate graph
    Output: graph is modified locally and visualized in current view
    """
    from stentseg.utils.picker import pick3d, label2worldcoordinates
    from stentseg.utils.visualization import DrawModelAxes

    if graph is None:
        print('No nodes removed, graph is NoneType')
        return
    coord1 = np.asarray(label2worldcoordinates(label),
                        dtype=np.float32)  # x,y,z
    if location == 'posterior':
        seeds = np.asarray(sorted(
            graph.nodes(), key=lambda x: x[1]))  # sort dim small to large
        falseindices = np.where(
            seeds[:, 1] > coord1[1]
        )  # tuple wih array of indices with values higher than coord y = 1
    if location == 'anterior':
        seeds = np.asarray(sorted(graph.nodes(), key=lambda x: x[1]))
        falseindices = np.where(seeds[:, 1] < coord1[1])
    elif location == 'proximal':
        seeds = np.asarray(sorted(graph.nodes(), key=lambda x: x[2]))
        falseindices = np.where(
            seeds[:, 2] < coord1[2])  # dim z = 2; origin proximal
    elif location == 'distal':
        seeds = np.asarray(sorted(graph.nodes(), key=lambda x: x[2]))
        falseindices = np.where(seeds[:, 2] > coord1[2])  # dim z = 2
    elif location == 'left':
        seeds = np.asarray(sorted(graph.nodes(), key=lambda x: x[0]))
        falseindices = np.where(seeds[:, 0] > coord1[0])
    elif location == 'right':
        seeds = np.asarray(sorted(graph.nodes(), key=lambda x: x[0]))
        falseindices = np.where(seeds[:, 0] < coord1[0])
    # get seeds for removal by indices
    falseseeds = seeds[falseindices[0]]
    # remove from graph
    graph.remove_nodes_from(tuple(map(
        tuple, falseseeds)))  # use map to convert to tuples
    view = axes.GetView()
    axes.Clear()
    DrawModelAxes(vol, graph, ax=axes, clim=clim, **kwargs)
    axes.SetView(view)
    if graph.number_of_edges() == 0:  # get label from picked seeds sd._nodes1
        label = pick3d(vv.gca(), vol)
        return label
Beispiel #7
0
def reDrawModel(vol, model, ax=None, selected_nodes=[]):
    if ax is None:
        ax = vv.gca()
    view = ax.GetView()
    ax.Clear()
    lim = (0, 2500)
    t = vv.volshow(vol, clim=lim, renderStyle='mip')
    pick3d(vv.gca(), vol)
    model.Draw(mc='g', mw=10, lc='g')
    node_points = _utils_GUI.interactive_node_points(model, scale=0.6)
    _utils_GUI.node_points_callbacks(node_points, selected_nodes, pick=False)
    # see if node_points are still selected to color them red
    for node_point in node_points:
        node_point.visible = True
        for i, node in enumerate(selected_nodes):
            if node_point.node == node.node:
                selected_nodes[i] = node_point
                node_point.faceColor = (1, 0, 0)

    ax.SetView(view)

    return node_points
Beispiel #8
0
## Load all rings of the limb
for i in nrs:
    ring = 'ringR%s' %(i)
    filename = '%s_%s_%s_%s_%s.ssdf' % (ptcode, ctcode, cropname, 'model'+what,ring)
    s["ringR" + str(i)] = ssdf.load(os.path.join(basedir1, filename))


## Visualize centerlines rings
s2 = loadmodel(targetdir2, ptcode, ctcode, cropname, modelname='stentseedsavgreg')
pmodel = points_from_nodes_in_graph(s2.model)
if FIG1 == True:
    f = vv.figure(1); vv.clf()
    f.position = 709.00, 30.00,  1203.00, 1008.00
    a1 = vv.subplot(121)
    show_ctvolume(s.vol, None, showVol=showVol, clim=clim0, isoTh=isoTh, removeStent=False)
    label = pick3d(vv.gca(), s.vol)
    a1.axis.visible = showAxis
    a1.daspect = 1,1,-1 
    
    a2 = vv.subplot(122)
    vv.plot(pmodel, ms='.', ls='', alpha=0.2, mw = 2) # stent seed points
    for i in nrs:  
        pp = s["ringR" + str(i)].ringpoints
        vv.plot(pp[0],pp[1],pp[2], ms='.', ls='', mw=3, mc='c')
    a2.axis.visible = showAxis
    a2.daspect = 1,1,-1 

# a1.camera = a2.camera

## Distances
# Obtain minimal distances from all points on ring to a point on ring below
fig = vv.figure()
vv.clf()
fig.position = 0.00, 22.00, 1920.00, 1018.00
clim = (0, 2500)
# Show volume
a1 = vv.subplot(111)
a1.daspect = 1, 1, -1
t = show_ctvolume(vol,
                  axis=a1,
                  showVol='ISO',
                  clim=clim,
                  isoTh=250,
                  removeStent=False,
                  climEditor=True)
label = pick3d(vv.gca(), vol)
vv.xlabel('x (mm)')
vv.ylabel('y (mm)')
vv.zlabel('z (mm)')

## Show 3D movie, by alternating the 10 volumes

# Load volumes
s = loadvol(basedir, ptcode, ctcode, cropname, 'phases')
vols = []
for key in dir(s):
    if key.startswith('vol'):
        zscale = (s[key].sampling[0] / s[key].sampling[1])  # z / y
        # resample vol using spline interpolation, 3rd order polynomial
        vol_zoom = scipy.ndimage.interpolation.zoom(s[key], [zscale, 1, 1],
                                                    'float32')
Beispiel #10
0
def identify_peaks_valleys(midpoints_peaks_valleys, model, vol, vis=True):
    """ Given a cloud of points containing 2 peak and 2 valley points for R1
    and R2, identify and return these locations. Uses clustering and x,y,z
    """
    # detect clusters to further label locations
    kmeans = KMeans(n_clusters=4)
    kmeans.fit(midpoints_peaks_valleys)
    centroids = kmeans.cluster_centers_  # x,y,z
    labels = kmeans.labels_

    # identify left, right, ant, post centroid (assumes origin is prox right anterior)
    left = list(centroids[:, 0]).index(max(centroids[:, 0]))  # max x value
    right = list(centroids[:, 0]).index(min(centroids[:, 0]))
    anterior = list(centroids[:, 1]).index(min(centroids[:, 1]))  # min y value
    posterior = list(centroids[:, 1]).index(max(centroids[:, 1]))
    # get points into grouped arrays
    cLeft, cRight, cAnterior, cPosterior = [], [], [], []
    for i, p in enumerate(midpoints_peaks_valleys):
        if labels[i] == left:
            cLeft.append(tuple(p.flat))
        elif labels[i] == right:
            cRight.append(tuple(p.flat))
        elif labels[i] == anterior:
            cAnterior.append(tuple(p.flat))
        elif labels[i] == posterior:
            cPosterior.append(tuple(p.flat))

    cLeft = np.asarray(cLeft)
    cRight = np.asarray(cRight)
    cAnterior = np.asarray(cAnterior)
    cPosterior = np.asarray(cPosterior)
    # divide into R1 R2
    R1_left = cLeft[list(cLeft[:, 2]).index(min(
        cLeft[:, 2]))]  # min z for R1; valley
    R2_left = cLeft[list(cLeft[:, 2]).index(max(cLeft[:, 2]))]  # valley
    R1_right = cRight[list(cRight[:, 2]).index(min(
        cRight[:, 2]))]  # min z for R1; valley
    R2_right = cRight[list(cRight[:, 2]).index(max(cRight[:, 2]))]  # valley
    R1_ant = cAnterior[list(cAnterior[:, 2]).index(min(
        cAnterior[:, 2]))]  # min z for R1; peak
    R2_ant = cAnterior[list(cAnterior[:, 2]).index(max(cAnterior[:,
                                                                 2]))]  # peak
    R1_post = cPosterior[list(cPosterior[:, 2]).index(min(
        cPosterior[:, 2]))]  # min z for R1; peak
    R2_post = cPosterior[list(cPosterior[:,
                                         2]).index(max(cPosterior[:,
                                                                  2]))]  # peak

    if vis == True:
        # visualize identified locations
        f = vv.figure(1)
        vv.clf()
        f.position = 968.00, 30.00, 944.00, 1002.00
        a = vv.gca()
        colors = ['r', 'g', 'b', 'm', 'c', 'y', 'w', 'k']
        for i, p in enumerate([
                R1_left, R2_left, R1_right, R2_right, R1_ant, R2_ant, R1_post,
                R2_post
        ]):
            vv.plot(p[0], p[1], p[2], ms='.', ls='', mc=colors[i], mw=14)
        vv.legend('R1 left', 'R2 left', 'R1 right', 'R2 right', 'R1 ant',
                  'R2 ant', 'R1 post', 'R2 post')
        show_ctvolume(vol, model, showVol='MIP', clim=(0, 2500))
        pick3d(vv.gca(), vol)
        model.Draw(mc='b', mw=10, lc='g')
        for i in range(len(midpoints_peaks_valleys)):
            vv.plot(midpoints_peaks_valleys[i],
                    ms='.',
                    ls='',
                    mc=colors[labels[i]],
                    mw=6)
        a.axis.axisColor = 1, 1, 1
        a.bgcolor = 0, 0, 0
        a.daspect = 1, 1, -1  # z-axis flipped
        a.axis.visible = True

    return R1_left, R2_left, R1_right, R2_right, R1_ant, R2_ant, R1_post, R2_post
Beispiel #11
0
def identifyCenterlines(s,
                        ptcode,
                        ctcode,
                        basedir,
                        modelname,
                        showVol='MIP',
                        **kwargs):
    """ s is struct with models
    """
    from stentseg.utils.datahandling import select_dir, loadvol, loadmodel
    from stentseg.utils.picker import pick3d
    from stentseg.utils.visualization import show_ctvolume
    from stentseg.utils import _utils_GUI

    showAxis = False
    # showVol  = 'MIP'  # MIP or ISO or 2D or None
    clim = (0, 2500)
    # clim = -200,500 # 2D
    isoTh = 250
    cropname = 'prox'

    # init fig
    f = vv.figure()
    vv.clf()
    f.position = 0.00, 22.00, 1920.00, 1018.00
    # load vol
    svol = loadvol(basedir, ptcode, ctcode, cropname, what='avgreg')
    # set sampling for cases where this was not stored correctly
    svol.vol.sampling = [svol.sampling[1], svol.sampling[1], svol.sampling[2]]
    vol = svol.vol
    s.sampling = [svol.sampling[1], svol.sampling[1],
                  svol.sampling[2]]  # for model
    # show vol
    t = show_ctvolume(vol, showVol=showVol, clim=clim, isoTh=isoTh, **kwargs)
    label = pick3d(vv.gca(), vol)
    vv.xlabel('x (mm)')
    vv.ylabel('y (mm)')
    vv.zlabel('z (mm)')

    if showVol == 'MIP':
        c = vv.ClimEditor(vv.gca())
        c.position = (10, 50)
        f.eventKeyDown.Bind(lambda event: _utils_GUI.ShowHideSlider(event, c))
        print('Use "s" to show/hide slider')
    if showVol == 'ISO':
        c = _utils_GUI.IsoThEditor(vv.gca())
        c.position = (10, 50)
        f.eventKeyDown.Bind(lambda event: _utils_GUI.ShowHideSlider(event, c))
        print('Use "s" to show/hide slider')

    f.eventKeyDown.Bind(
        lambda event: _utils_GUI.ViewPresets(event, [vv.gca()]))
    print('------------------------')
    print('Use keys 1, 2, 3, 4 and 5 for preset anatomic views')
    print('Use v for a default zoomed view')
    print('Use x to show and hide axis')
    print('------------------------')

    ax, s2 = interactiveCenterlineID(s, ptcode, ctcode, basedir, cropname,
                                     modelname)

    return ax, s2
ax.axis.axisColor = 0, 0, 0
ax.bgcolor = 1, 1, 1
vv.xlabel('x (mm)')
vv.ylabel('y (mm)')
vv.zlabel('z (mm)')

# draw
showVol = 'ISO'
t = show_ctvolume(vol,
                  showVol=showVol,
                  removeStent=False,
                  climEditor=True,
                  isoTh=300)
if showmodelavgreg:
    # show model and CT mid cycle
    mw = 5
    modelcll.Draw(mc='b', mw=mw, lc='b', alpha=0.5)
    label = pick3d(ax, vol)
if not showvol:
    t.visible = False

# get centerline models in different phases
for phasenr in phases:
    model_phase = get_graph_in_phase(modelcll, phasenr=phasenr)
    model_phase.Draw(mc=color[phasenr], mw=10, lc=color[phasenr])

#bind view control
f.eventKeyDown.Bind(
    lambda event: _utils_GUI.RotateView(event, [ax], axishandling=False))
f.eventKeyDown.Bind(lambda event: _utils_GUI.ViewPresets(event, [ax]))
Beispiel #13
0
def showModelsStatic(ptcode,codes, vols, ss, mm, vs, showVol, clim, isoTh, clim2, 
    clim2D, drawMesh=True, meshDisplacement=True, drawModelLines=True, 
    showvol2D=False, showAxis=False, drawVessel=False, vesselType=1,
    meshColor=None, **kwargs):
    """ show one to four models in multipanel figure. 
    Input: arrays of codes, vols, ssdfs; params from show_models_static
    Output: axes, colorbars 
    """
    # init fig
    f = vv.figure(1); vv.clf()
    # f.position = 0.00, 22.00,  1920.00, 1018.00
    mw = 5
    if drawMesh == True:
        lc = 'w'
        meshColor = meshColor
    else:
        lc = 'g'
    # create subplots
    if isinstance(codes, str): # if 1 ctcode, otherwise tuple of strings
        a1 = vv.subplot(111)
        axes = [a1]
    elif codes == (codes[0],codes[1]):
        a1 = vv.subplot(121)
        a2 = vv.subplot(122)
        axes = [a1,a2]
    elif codes == (codes[0],codes[1], codes[2]):
        a1 = vv.subplot(131)
        a2 = vv.subplot(132)
        a3 = vv.subplot(133)
        axes = [a1,a2,a3]
    elif codes == (codes[0],codes[1], codes[2], codes[3]):
        a1 = vv.subplot(141)
        a2 = vv.subplot(142)
        a3 = vv.subplot(143)
        a4 = vv.subplot(144)
        axes = [a1,a2,a3,a4]
    elif codes == (codes[0],codes[1], codes[2], codes[3], codes[4]):
        a1 = vv.subplot(151)
        a2 = vv.subplot(152)
        a3 = vv.subplot(153)
        a4 = vv.subplot(154)
        a5 = vv.subplot(155)
        axes = [a1,a2,a3,a4,a5]
    else:
        a1 = vv.subplot(111)
        axes = [a1]
    for i, ax in enumerate(axes):
        ax.MakeCurrent()
        vv.xlabel('x (mm)');vv.ylabel('y (mm)');vv.zlabel('z (mm)')
        vv.title('Model for LSPEAS %s  -  %s' % (ptcode[7:], codes[i]))
        t = show_ctvolume(vols[i], ss[i].model, axis=ax, showVol=showVol, clim=clim, isoTh=isoTh, **kwargs)
        label = pick3d(ax, vols[i])
        if drawModelLines == True:
            ss[i].model.Draw(mc='b', mw = mw, lc=lc)
    if showvol2D:
        for i, ax in enumerate(axes):
            t2 = vv.volshow2(vols[i], clim=clim2D, axes=ax)
    cbars = [] # colorbars
    if drawMesh:
        for i, ax in enumerate(axes):
            m = vv.mesh(mm[i], axes=ax)
            if meshDisplacement:
                m.clim = clim2
                m.colormap = vv.CM_JET #todo: use colormap Viridis or Magma as JET is not linear (https://bids.github.io/colormap/)
                cb = vv.colorbar(ax)
                cbars.append(cb)
            elif meshColor is not None:
                if len(meshColor) == 1:
                    m.faceColor = meshColor[0] # (0,1,0,1)
                else:
                    m.faceColor = meshColor[i]
            else:
                m.faceColor = 'g'
    if drawVessel:
        for i, ax in enumerate(axes):
            v = showVesselMesh(vs[i], ax, type=vesselType)
    for ax in axes:
        ax.axis.axisColor = 1,1,1
        ax.bgcolor = 25/255,25/255,112/255 # midnightblue
        # http://cloford.com/resources/colours/500col.htm
        ax.daspect = 1, 1, -1  # z-axis flipped
        ax.axis.visible = showAxis
    # set colorbar position
    for cbar in cbars:
        p1 = cbar.position
        cbar.position = (p1[0], 20, p1[2], 0.98) # x,y,w,h
    
    # bind rotate view and view presets [1,2,3,4,5]
    f = vv.gcf()
    f.eventKeyDown.Bind(lambda event: _utils_GUI.RotateView(event,axes,axishandling=False) )
    f.eventKeyDown.Bind(lambda event: _utils_GUI.ViewPresets(event,axes) )
    
    return axes, cbars
Beispiel #14
0
    def __init__(self,ptcode,ctcode,allcenterlines,basedir):
        """
        Script to show the stent plus centerline model and select points on 
        centerlines for motion analysis 
        """
        import os, time
        import pirt
        import visvis as vv
        import numpy as np
        import math
        import itertools
        import xlsxwriter
        from datetime import datetime

                
        from stentseg.utils.datahandling import select_dir, loadvol, loadmodel
        from stentseg.utils.new_pointset import PointSet
        from stentseg.stentdirect.stentgraph import create_mesh
        from stentseg.motion.vis import create_mesh_with_abs_displacement
        from stentseg.utils.visualization import show_ctvolume
        from pirt.utils.deformvis import DeformableTexture3D, DeformableMesh
        from stentseg.utils import PointSet
        from stentseg.stentdirect import stentgraph
        from visvis import Pointset # for meshes
        from stentseg.stentdirect.stentgraph import create_mesh
        from visvis.processing import lineToMesh, combineMeshes
        from visvis import ssdf
        from stentseg.utils.picker import pick3d
        try:
            from PyQt4 import QtCore, QtGui # PyQt5
        except ImportError:
            from PySide import QtCore, QtGui # PySide2
        from stentseg.apps.ui_dialog import MyDialog
        from stentseg.utils.centerline import dist_over_centerline # added for Mirthe 
        import copy
        
        
        cropname = 'prox'
        
        exceldir = os.path.join(basedir,ptcode)
        
        # Load deformations and avg ct (forward for mesh)
        # centerlines combined in 1 model
        m = loadmodel(basedir, ptcode, ctcode, cropname, modelname = 'centerline_total_modelavgreg_deforms') 
        model = m.model
        # centerlines separated in a model for each centerline
        # m_sep = loadmodel(basedir, ptcode, ctcode, cropname, modelname = 'centerline_modelavgreg_deforms')
        s = loadvol(basedir, ptcode, ctcode, cropname, what='avgreg')
        vol_org = copy.deepcopy(s.vol)
        s.vol.sampling = [vol_org.sampling[1], vol_org.sampling[1], vol_org.sampling[2]]
        s.sampling = s.vol.sampling
        vol = s.vol
        
        # Start visualization and GUI
        
        fig = vv.figure(30); vv.clf()
        
        fig.position = 0.00, 30.00,  944.00, 1002.00
        a = vv.gca()
        a.axis.axisColor = 1,1,1
        a.axis.visible = True
        a.bgcolor = 0,0,0
        a.daspect = 1, 1, -1
        lim = 2500
        t = vv.volshow(vol, clim=(0, lim), renderStyle='mip')
        pick3d(vv.gca(), vol)
        b = model.Draw(mc='b', mw = 0, lc='g', alpha = 0.5)
        vv.xlabel('x (mm)');vv.ylabel('y (mm)');vv.zlabel('z (mm)')
        vv.title('Model for LSPEAS %s  -  %s' % (ptcode[7:], ctcode))
        
        # Add clickable nodes
        t0 = time.time()
        node_points = []
        for i, node in enumerate(sorted(model.nodes())):
            node_point = vv.solidSphere(translation = (node), scaling = (0.6,0.6,0.6))
            node_point.faceColor = 'b'
            node_point.alpha = 0.5
            node_point.visible = True
            node_point.node = node
            node_point.nr = i
            node_points.append(node_point)
        t1 = time.time()
        print('Clickable nodes created, which took %1.2f min.' % ((t1-t0)/60))
        
        # list of correctly clicked nodes
        selected_nodes_sum = set()
        
        # Initialize labels
        t0 = vv.Label(a, '\b{Node nr|location}: ', fontSize=11, color='w')
        t0.position = 0.1, 25, 0.5, 20  # x (frac w), y, w (frac), h
        t0.bgcolor = None
        t0.visible = True
        t1 = vv.Label(a, '\b{Nodepair}: ', fontSize=11, color='w')
        t1.position = 0.1, 45, 0.5, 20
        t1.bgcolor = None
        t1.visible = True
        
        # Initialize output variable to store pulsatility analysis
        storeOutput = list()
        
        
        def on_key(event): 
            if event.key == vv.KEY_ENTER:
                
                # mogenlijkheden aantal nodes 
                    # 1 voor relative beweging vanuit avg punt
                    # 2 voor onderlinge beweging tussen twee punten
                    # 3 voor hoek in punt 2 van punt 1 naar punt 3
                    
                if len(selected_nodes) == 1:
                    selectn1 = selected_nodes[0].node
                    n1index = selected_nodes[0].nr
                    n1Deforms = model.node[selectn1]['deforms']
                    output = point_pulsatility(selectn1, n1Deforms)
                    output['NodesIndex'] = [n1index]
                    
                    # Store output with name
                    dialog_output = get_index_name()
                    output['Name'] = dialog_output
                    storeOutput.append(output)
                    
                    # update labels
                    t1.text = '\b{Node}: %i' % (n1index)
                    t1.visible = True
                    print('selection of 1 node stored')

                if len(selected_nodes) == 2:
                    # get nodes
                    selectn1 = selected_nodes[0].node
                    selectn2 = selected_nodes[1].node
                    # get index of nodes which are in fixed order
                    n1index = selected_nodes[0].nr
                    n2index = selected_nodes[1].nr
                    nindex = [n1index, n2index]
                    # get deforms of nodes
                    n1Deforms = model.node[selectn1]['deforms']
                    n2Deforms = model.node[selectn2]['deforms']
                    # get pulsatility
                    cl_merged = append_centerlines(allcenterlines) 
                    output = point_to_point_pulsatility(cl_merged, selectn1, 
                                        n1Deforms, selectn2, n2Deforms, type='euclidian')
                    output['NodesIndex'] = nindex
                    
                    # get distance_centerline
                   
                    #dist_cl = dist_over_centerline(cl_merged, selectn1, selectn2, type='euclidian') # toegevoegd Mirthe
                    
                    #dist_cl = dist_centerline_total(cl_merged, selectn1, 
                    #                    n1Deforms, selectn2, n2Deforms, type='euclidian')
                    
                    # Store output with name
                    dialog_output = get_index_name()
                    output['Name'] = dialog_output
                    storeOutput.append(output)  
                   
                    # update labels
                    t1.text = '\b{Node pair}: %i - %i' % (nindex[0], nindex[1])
                    t1.visible = True
                    print('selection of 2 nodes stored')
                        
                if len(selected_nodes) == 3:
                    # get nodes
                    selectn1 = selected_nodes[0].node
                    selectn2 = selected_nodes[1].node
                    selectn3 = selected_nodes[2].node
                    # get index of nodes which are in fixed order
                    n1index = selected_nodes[0].nr
                    n2index = selected_nodes[1].nr
                    n3index = selected_nodes[2].nr
                    nindex = [n1index, n2index, n3index]
                    # get deforms of nodes
                    n1Deforms = model.node[selectn1]['deforms']
                    n2Deforms = model.node[selectn2]['deforms']
                    n3Deforms = model.node[selectn3]['deforms']
                    # get angulation
                    output = line_line_angulation(selectn1, 
                                        n1Deforms, selectn2, n2Deforms, selectn3, n3Deforms)
                    output['NodesIndex'] = nindex
                    
                    # Store output with name
                    dialog_output = get_index_name()
                    output['Name'] = dialog_output
                    storeOutput.append(output)
                    
                    # update labels
                    t1.text = '\b{Nodes}: %i - %i - %i' % (nindex[0], nindex[1], nindex[2])
                    t1.visible = True
                    print('selection of 3 nodes stored')
                    
                if len(selected_nodes) > 3:
                    for node in selected_nodes:
                        node.faceColor = 'b'
                    selected_nodes.clear()
                    print('to many nodes selected, select 1,2 or 3 nodes')
                if len(selected_nodes) < 1:
                    for node in selected_nodes:
                        node.faceColor = 'b'
                    selected_nodes.clear()
                    print('to few nodes selected, select 1,2 or 3 nodes')                
                
                # Visualize analyzed nodes and deselect
                for node in selected_nodes:
                    selected_nodes_sum.add(node)

                for node in selected_nodes_sum:
                    node.faceColor = 'g'  # make green when analyzed
                selected_nodes.clear()
                
            if event.key == vv.KEY_ESCAPE:
                # FINISH MODEL, STORE TO EXCEL
                
                # Store to EXCEL
                storeOutputToExcel(storeOutput, exceldir)
                vv.close(fig)
                print('output stored to excel')
     
        selected_nodes = list()
        def select_node(event):
            """ select and deselect nodes by Double Click
            """
            if event.owner not in selected_nodes:
                event.owner.faceColor = 'r'
                selected_nodes.append(event.owner)
            elif event.owner in selected_nodes:
                event.owner.faceColor = 'b'
                selected_nodes.remove(event.owner)
        
        def pick_node(event):
            nodenr = event.owner.nr
            node = event.owner.node
            t0.text = '\b{Node nr|location}: %i | x=%1.3f y=%1.3f z=%1.3f' % (nodenr,node[0],node[1],node[2])
        
        def unpick_node(event):
            t0.text = '\b{Node nr|location}: '
        
        def point_pulsatility(point1, point1Deforms):
            n1Indices = point1 + point1Deforms
            pos_combinations = list(itertools.combinations(range(len(point1Deforms)),2))
            distances = []
            for i in pos_combinations:
                v = point1Deforms[i[0]] - point1Deforms[i[1]]
                distances.append(((v[0]**2 + v[1]**2 + v[2]**2)**0.5 ))
            distances = np.array(distances)
            
            # get max distance between phases
            point_phase_max = distances.max()
            point_phase_max = [point_phase_max, [x*10 for x in (pos_combinations[list(distances).index(point_phase_max)])]]
            
            # get min distance between phases
            point_phase_min = distances.min()
            point_phase_min = [point_phase_min, [x*10 for x in (pos_combinations[list(distances).index(point_phase_min)])]]
            
            return {'point_phase_min':point_phase_min,'point_phase_max': point_phase_max, 'Node1': [point1, point1Deforms]}

        def point_to_point_pulsatility(cl, point1, point1Deforms, 
                                            point2, point2Deforms,type='euclidian'):
            
            import numpy as np
            
            n1Indices = point1 + point1Deforms
            n2Indices = point2 + point2Deforms
            # define vector between nodes
            v = n1Indices - n2Indices
            distances = ( (v[:,0]**2 + v[:,1]**2 + v[:,2]**2)**0.5 ).reshape(-1,1)
            # get min and max distance
            point_to_pointMax = distances.max()
            point_to_pointMin = distances.min()
            # add phase in cardiac cycle where min and max where found (5th = 50%)
            point_to_pointMax = [point_to_pointMax, (list(distances).index(point_to_pointMax) )*10]
            point_to_pointMin = [point_to_pointMin, (list(distances).index(point_to_pointMin) )*10]
            # get median of distances
            point_to_pointMedian = np.percentile(distances, 50) # Q2
            # median of the lower half, Q1 and upper half, Q3
            point_to_pointQ1 = np.percentile(distances, 25)
            point_to_pointQ3 = np.percentile(distances, 75)
            # Pulsatility min max distance point to point
            point_to_pointP = point_to_pointMax[0] - point_to_pointMin[0]
            # add % change to pulsatility
            point_to_pointP = [point_to_pointP, (point_to_pointP/point_to_pointMin[0])*100 ]
            
            # find index of point on cll and calculate length change cll ???
            if isinstance(cl, PointSet):
                cl = np.asarray(cl).reshape((len(cl),3))
                
            indpoint1 = np.where( np.all(cl == point1, axis=-1) )[0] # -1 counts from last to the first axis
            indpoint2 = np.where( np.all(cl == point2, axis=-1) )[0] # renal point
            n1Indices = point1 + point1Deforms
            n2Indices = point2 + point2Deforms
            
            clDeforms = []
            clpart_deformed = []
            vectors = []
            clpart = []
            d = []
            dist_cl = []   
            clpartDeforms = []
            clpart_deformed_test = []
            
            for i in range(len(cl)):
                clDeforms1 = model.node[cl[i,0], cl[i,1], cl[i,2]]['deforms']
                clDeforms.append(clDeforms1)
                clpart_deformed1 = cl[i] + clDeforms1
                clpart_deformed.append(clpart_deformed1)
            
            # clpart = cl[min(indpoint1[0], indpoint2[0]):max(indpoint1[0], indpoint2[0])+1]
            
            clpart = clpart_deformed[min(indpoint1[0], indpoint2[0]):max(indpoint1[0], indpoint2[0])+1]
            
            # for i in range(len(clpart)):
            #     clpartDeforms1 = model.node[clpart[i,0], clpart[i,1], clpart[i,2]]['deforms']
            #     clpartDeforms.append(clpartDeforms1)
            #     clpart_deformed1_test = cl[i] + clpartDeforms1
            #     clpart_deformed_test.append(clpart_deformed1_test)
                
            # for k in range(len(n1Indices)):
            #     vectors_phases = np.vstack([clpart_deformed_test[i+1][k]-clpart_deformed_test[i][k] for i in range(len(clpart)-1)])
            #     vectors.append(vectors_phases)
                
            for k in range(len(n1Indices)):
                vectors_phases = np.vstack([clpart[i+1][k]-clpart[i][k] for i in range(len(clpart)-1)])
                vectors.append(vectors_phases)
            
            for i in range(len(vectors)):
                if type == 'euclidian':
                    d1 = (vectors[i][:,0]**2 + vectors[i][:,1]**2 + vectors[i][:,2]**2)**0.5  # 3Dvector length in mm
                    d.append(d1)
                elif type == 'z':
                    d = abs(vectors[i][:,2])  # x,y,z ; 1Dvector length in mm
             
            for i in range(len(d)):
                dist = d[i].sum()
                dist_cl.append(dist)
               
            #if indpoint2 > indpoint1: # stent point proximal to renal on centerline: positive
                #dist_cl*=-1
                
            cl_min_index1 = np.argmin(dist_cl)   
            cl_min_index = cl_min_index1*10
            cl_min = min(dist_cl)
            cl_max_index1 = np.argmax(dist_cl)   
            cl_max_index = cl_max_index1*10
            cl_max = max(dist_cl)
            
            print ([dist_cl])
            print ([point1, point2])
            
            return {'point_to_pointMin': point_to_pointMin, 
            'point_to_pointQ1': point_to_pointQ1, 
            'point_to_pointMedian': point_to_pointMedian, 
            'point_to_pointQ3': point_to_pointQ3, 
            'point_to_pointMax': point_to_pointMax, 
            'point_to_pointP': point_to_pointP, 
            'Node1': [point1, point1Deforms], 
            'Node2': [point2, point2Deforms], 'distances': distances, 
            'dist_cl': dist_cl, 'cl_min_index': cl_min_index, 
            'cl_max_index': cl_max_index, 'cl_min': cl_min, 'cl_max': cl_max}
            
        
        def line_line_angulation(point1, point1Deforms, point2, point2Deforms, point3, point3Deforms):
            n1Indices = point1 + point1Deforms
            n2Indices = point2 + point2Deforms
            n3Indices = point3 + point3Deforms
            
            # get vectors
            v1 = n1Indices - n2Indices
            v2 = n3Indices - n2Indices
            
            # get angles
            angles = []
            for i in range(len(v1)):
                angles.append(math.degrees(math.acos((np.dot(v1[i],v2[i]))/
                (np.linalg.norm(v1[i])*np.linalg.norm(v2[i])))))
            angles = np.array(angles)
            
            # get all angle differences of all phases
            pos_combinations = list(itertools.combinations(range(len(v1)),2))
            angle_diff = []
            for i in pos_combinations:
                v = point1Deforms[i[0]] - point1Deforms[i[1]]
                angle_diff.append(abs(angles[i[0]] - angles[i[1]]))
            angle_diff = np.array(angle_diff)
            
            # get max angle differences
            point_angle_diff_max = angle_diff.max()
            point_angle_diff_max = [point_angle_diff_max, [x*10 for x in
            (pos_combinations[list(angle_diff).index(point_angle_diff_max)])]]
            
            # get min angle differences
            point_angle_diff_min = angle_diff.min()
            point_angle_diff_min = [point_angle_diff_min, [x*10 for x in 
            (pos_combinations[list(angle_diff).index(point_angle_diff_min)])]]
            
            return {'point_angle_diff_min':point_angle_diff_min,
            'point_angle_diff_max': point_angle_diff_max, 'angles': angles, 
            'Node1': [point1, point1Deforms], 'Node2': [point2, point2Deforms], 
            'Node3': [point3, point1Deforms]}
            
        
        def append_centerlines(allcenterlines):
            """ Merge seperated PointSet centerlines into one PointSet
            """
            # cl_merged = allcenterlines[0]
            cl_merged = PointSet(3)
            for i in range(0,len(allcenterlines)):
                for point in allcenterlines[i]:
                    cl_merged.append(point)
            return cl_merged
            
            
        def get_index_name():
                # Gui for input name
                app = QtGui.QApplication([])
                m = MyDialog()
                m.show()
                m.exec_()
                dialog_output = m.edit.text()
                return dialog_output  
            
       
        def storeOutputToExcel(storeOutput, exceldir):
            """Create file and add a worksheet or overwrite existing
            """
            # https://pypi.python.org/pypi/XlsxWriter
            workbook = xlsxwriter.Workbook(os.path.join(exceldir,'storeOutput.xlsx'))
            worksheet = workbook.add_worksheet('General')
            # set column width
            worksheet.set_column('A:A', 35)
            worksheet.set_column('B:B', 30)
            # add a bold format to highlight cells
            bold = workbook.add_format({'bold': True})
            # write title and general tab
            worksheet.write('A1', 'Output ChEVAS dynamic CT, 10 Phases', bold)
            analysisID = '%s_%s_%s' % (ptcode, ctcode, cropname)
            worksheet.write('A2', 'Filename:', bold)
            worksheet.write('B2', analysisID)
            worksheet.write('A3', 'Date and Time:', bold)
            date_time = datetime.now() #strftime("%d-%m-%Y %H:%M")
            date_format_str = 'dd-mm-yyyy hh:mm'
            date_format = workbook.add_format({'num_format': date_format_str,
                                      'align': 'left'})
            worksheet.write_datetime('B3', date_time, date_format)
            # write 'storeOutput'
            sort_index = []
            for i in range(len(storeOutput)):
                type = len(storeOutput[i]['NodesIndex'])
                sort_index.append([i, type])
            sort_index = np.array(sort_index)
            sort_index = sort_index[sort_index[:,1].argsort()]
            
            for i, n in sort_index:
                worksheet = workbook.add_worksheet(storeOutput[i]['Name'])
                worksheet.set_column('A:A', 35)
                worksheet.set_column('B:B', 20)
                worksheet.write('A1', 'Name:', bold)
                worksheet.write('B1', storeOutput[i]['Name'])
                if n == 1:
                    worksheet.write('A2', 'Type:', bold)
                    worksheet.write('B2', '1 Node')
                    
                    worksheet.write('A3', 'Minimum translation (mm, Phases)',bold)
                    worksheet.write('B3', storeOutput[i]['point_phase_min'][0])
                    worksheet.write_row('C3', list(storeOutput[i]['point_phase_min'][1]))
                    
                    worksheet.write('A4', 'Maximum translation (mm, Phases)',bold)
                    worksheet.write('B4', storeOutput[i]['point_phase_max'][0])
                    worksheet.write_row('C4', list(storeOutput[i]['point_phase_max'][1]))
                    
                    worksheet.write('A5', 'Avg node position and deformations', bold)
                    worksheet.write('B5', str(list(storeOutput[i]['Node1'][0])))
                    worksheet.write_row('C5', [str(x)for x in list(storeOutput[i]['Node1'][1])])
                    
                    worksheet.write('A6', 'Node Index Number', bold)
                    worksheet.write_row('B6', list(storeOutput[i]['NodesIndex'])) 
                                       
                elif n == 2:
                    worksheet.write('A2', 'Type:', bold)
                    worksheet.write('B2', '2 Nodes')
                    
                    worksheet.write('A3', 'Minimum distance (mm, Phases)',bold)
                    worksheet.write('B3', storeOutput[i]['point_to_pointMin'][0])
                    worksheet.write('C3', storeOutput[i]['point_to_pointMin'][1])
                    
                    worksheet.write('A4', 'Q1 distance (mm)',bold)
                    worksheet.write('B4', storeOutput[i]['point_to_pointQ1'])

                    worksheet.write('A5', 'Median distance (mm)',bold)
                    worksheet.write('B5', storeOutput[i]['point_to_pointMedian'])
                    
                    worksheet.write('A6', 'Q3 distance (mm)',bold)
                    worksheet.write('B6', storeOutput[i]['point_to_pointQ3'])
                    
                    worksheet.write('A7', 'Maximum distance (mm, phases)',bold)
                    worksheet.write('B7', storeOutput[i]['point_to_pointMax'][0])
                    worksheet.write('C7', storeOutput[i]['point_to_pointMax'][1])
                    
                    worksheet.write('A8', 'Maximum distance difference (mm)', bold)
                    worksheet.write('B8', storeOutput[i]['point_to_pointP'][0])
                    
                    worksheet.write('A9', 'Distances for each phase', bold)
                    worksheet.write_row('B9', [str(x) for x in list(storeOutput[i]['distances'])])
                    
                    worksheet.write('A10', 'Avg node1 position and deformations', bold)
                    worksheet.write('B10', str(list(storeOutput[i]['Node1'][0])))
                    worksheet.write_row('C10', [str(x) for x in list(storeOutput[i]['Node1'][1])])
                    
                    worksheet.write('A11', 'Avg node2 position and deformations', bold)
                    worksheet.write('B11', str(list(storeOutput[i]['Node2'][0])))
                    worksheet.write_row('C11', [str(x) for x in list(storeOutput[i]['Node2'][1])])
                    
                    worksheet.write('A12', 'Node Index Number', bold)
                    worksheet.write_row('B12', list(storeOutput[i]['NodesIndex'])) 
                    
                    worksheet.write('A13', 'Length centerline', bold) 
                    worksheet.write('B13', str(list(storeOutput[i]['dist_cl']))) 
                    
                    worksheet.write('A14', 'Minimum length centerline', bold) 
                    worksheet.write('B14', storeOutput[i]['cl_min']) 
                    worksheet.write('C14', storeOutput[i]['cl_min_index']) 
                    
                    worksheet.write('A15', 'Maximum length centerline', bold) 
                    worksheet.write('B15', storeOutput[i]['cl_max'])  
                    worksheet.write('C15', storeOutput[i]['cl_max_index']) 
                
                elif n == 3:
                    worksheet.write('A2', 'Type:', bold)
                    worksheet.write('B2', '3 Nodes')
                    
                    worksheet.write('A3', 'Minimum angle difference (degrees, Phases)',bold)
                    worksheet.write('B3', storeOutput[i]['point_angle_diff_min'][0])
                    worksheet.write_row('C3', list(storeOutput[i]['point_angle_diff_min'][1]))
                    
                    worksheet.write('A4', 'Maximum angle difference (degrees, Phases)',bold)
                    worksheet.write('B4', storeOutput[i]['point_angle_diff_max'][0])
                    worksheet.write_row('C4', list(storeOutput[i]['point_angle_diff_max'][1]))
                    
                    worksheet.write('A5', 'Angles for each phase (degrees)',bold)
                    worksheet.write_row('B5', list(storeOutput[i]['angles']))
                    
                    worksheet.write('A6', 'Avg node1 position and deformations', bold)
                    worksheet.write('B6', str(list(storeOutput[i]['Node1'][0])))
                    worksheet.write_row('C6', [str(x) for x in list(storeOutput[i]['Node1'][1])])
                    
                    worksheet.write('A7', 'Avg node2 position and deformations', bold)
                    worksheet.write('B7', str(list(storeOutput[i]['Node2'][0])))
                    worksheet.write_row('C7', [str(x) for x in list(storeOutput[i]['Node2'][1])])
                    
                    worksheet.write('A8', 'Avg node2 position and deformations', bold)
                    worksheet.write('B8', str(list(storeOutput[i]['Node3'][0])))
                    worksheet.write_row('C8', [str(x) for x in list(storeOutput[i]['Node3'][1])])
                    
                    worksheet.write('A9', 'Node Index Number', bold)
                    worksheet.write_row('B9', list(storeOutput[i]['NodesIndex']))   
                    
            workbook.close()
        
        # Bind event handlers
        fig.eventKeyDown.Bind(on_key)
        for node_point in node_points:
            node_point.eventDoubleClick.Bind(select_node)
            node_point.eventEnter.Bind(pick_node)
            node_point.eventLeave.Bind(unpick_node)
Beispiel #15
0
    def __init__(self,ptcode,ctcode,basedir, seed_th=[600], show=True, 
                normalize=False, modelname='model'):
        
        import os
        
        import numpy as np
        import visvis as vv
        from visvis import ssdf
        
        from stentseg.utils import PointSet, _utils_GUI
        from stentseg.utils.datahandling import select_dir, loadvol, loadmodel
        from stentseg.stentdirect.stentgraph import create_mesh
        from stentseg.stentdirect import stentgraph, StentDirect, getDefaultParams
        from stentseg.stentdirect import AnacondaDirect, EndurantDirect, NellixDirect
        from stentseg.utils.visualization import show_ctvolume
        from stentseg.utils.picker import pick3d, label2worldcoordinates, label2volindices
        import scipy
        from scipy import ndimage
        import copy
        
        # Select dataset to register
        cropname = 'prox'
        # phase = 10
        #dataset = 'avgreg'
        #what = str(phase) + dataset # avgreg
        what = 'avgreg'
        
        # Load volumes
        s = loadvol(basedir, ptcode, ctcode, cropname, what)
        
        # sampling was not properly stored after registration for all cases: reset sampling
        vol_org = copy.deepcopy(s.vol)
        s.vol.sampling = [vol_org.sampling[1], vol_org.sampling[1], vol_org.sampling[2]] # z,y,x
        s.sampling = s.vol.sampling
        vol = s.vol
        
        ## Initialize segmentation parameters
        stentType = 'nellix'  # 'zenith';'nellix' runs modified pruning algorithm in Step3
        
        p = getDefaultParams(stentType)
        p.seed_threshold = seed_th     # step 1 [lower th] or [lower th, higher th]
        # p.seedSampleRate = 7                  # step 1, nellix
        p.whatphase = what                
        
        
        ## Perform segmentation
        # Instantiate stentdirect segmenter object
        if stentType == 'anacondaRing':
                sd = AnacondaDirect(vol, p) # inherit _Step3_iter from AnacondaDirect class
                #runtime warning using anacondadirect due to mesh creation, ignore
        elif stentType == 'endurant':
                sd = EndurantDirect(vol, p)
        elif stentType == 'nellix':
                sd = NellixDirect(vol, p)
        else:
                sd = StentDirect(vol, p) 

        ## show histogram and normalize
        # f = vv.figure(3)
        # a = vv.gca()
        # vv.hist(vol, drange=(300,vol.max()))
        
        # normalize vol to certain limit
        if normalize:
                sd.Step0(3071)
                vol = sd._vol
                # b= vv.hist(vol, drange=(300,3071))
                # b.color = (1,0,0)
       
        ## Perform step 1 for seeds
        sd.Step1()
        
        ## Visualize
        if show:
                fig = vv.figure(2); vv.clf()
                fig.position = 0.00, 22.00,  1920.00, 1018.00
                clim = (0,2000)
                
                # Show volume and model as graph
                a1 = vv.subplot(121)
                a1.daspect = 1,1,-1
                # t = vv.volshow(vol, clim=clim)
                t = show_ctvolume(vol, axis=a1, showVol='MIP', clim =clim, isoTh=250, 
                                removeStent=False, climEditor=True)
                label = pick3d(vv.gca(), vol)
                sd._nodes1.Draw(mc='b', mw = 2)       # draw seeded nodes
                #sd._nodes2.Draw(mc='b', lc = 'g')    # draw seeded and MCP connected nodes
                vv.xlabel('x (mm)');vv.ylabel('y (mm)');vv.zlabel('z (mm)')
                
                # Show volume and cleaned up graph
                a2 = vv.subplot(122)
                a2.daspect = 1,1,-1
                sd._nodes1.Draw(mc='b', mw = 2)       # draw seeded nodes
                # t = vv.volshow(vol, clim=clim)
                # label = pick3d(vv.gca(), vol)
                # sd._nodes2.Draw(mc='b', lc='g')
                # sd._nodes3.Draw(mc='b', lc='g')
                vv.xlabel('x (mm)');vv.ylabel('y (mm)');vv.zlabel('z (mm)')
                
                # # Show the mesh
                #===============================================================================
                # a3 = vv.subplot(133)
                # a3.daspect = 1,1,-1
                # t = vv.volshow(vol, clim=clim)
                # pick3d(vv.gca(), vol)
                # #sd._nodes3.Draw(mc='b', lc='g')
                # m = vv.mesh(bm)
                # m.faceColor = 'g'
                # # _utils_GUI.vis_spared_edges(sd._nodes3)
                # vv.xlabel('x (mm)');vv.ylabel('y (mm)');vv.zlabel('z (mm)')
                #===============================================================================
                
                # Use same camera
                a1.camera = a2.camera #= a3.camera
                
                switch = True
                a1.axis.visible = switch
                a2.axis.visible = switch
                #a3.axis.visible = switch
                

        ## Store segmentation to disk
        
        # Get graph model
        model = sd._nodes1
                
        # Build struct
        s2 = vv.ssdf.new()
        s2.sampling = s.sampling
        s2.origin = s.origin
        s2.stenttype = s.stenttype
        s2.croprange = s.croprange
        for key in dir(s):
                if key.startswith('meta'):
                    suffix = key[4:]
                    s2['meta'+suffix] = s['meta'+suffix]
        s2.what = what
        s2.params = p
        s2.stentType = stentType
        # Store model (not also volume)
        s2.model = model.pack()
        
        
        # Save
        filename = '%s_%s_%s_%s.ssdf' % (ptcode, ctcode, cropname, modelname+ what)
        ssdf.save(os.path.join(basedir, ptcode, filename), s2)
        print('saved to disk as {}.'.format(filename) )

        ## Make model dynamic (and store/overwrite to disk)
        #===============================================================================
        # 
        # import pirt
        # from stentsegf.motion.dynamic import incorporate_motion_nodes, incorporate_motion_edges  
        # 
        # # Load deforms
        # s = loadvol(basedir, ptcode, ctcode, cropname, '10deforms')
        # deformkeys = []
        # for key in dir(s):
        #     if key.startswith('deform'):
        #         deformkeys.append(key)
        # deforms = [s[key] for key in deformkeys]
        # deforms = [pirt.DeformationFieldBackward(*fields) for fields in deforms]
        # paramsreg = s.params
        # 
        # # Load model
        # s = loadmodel(basedir, ptcode, ctcode, cropname, 'model'+what)
        # model = s.model
        # 
        # # Combine ...
        # incorporate_motion_nodes(model, deforms, s.origin)
        # incorporate_motion_edges(model, deforms, s.origin)
        # 
        # # Save back
        # filename = '%s_%s_%s_%s.ssdf' % (ptcode, ctcode, cropname, 'model'+what)
        # s.model = model.pack()
        # s.paramsreg = paramsreg
        # ssdf.save(os.path.join(basedir, ptcode, filename), s)
        # print('saved to disk as {}.'.format(filename) )
        #===============================================================================
Beispiel #16
0
    def __init__(self,
                 ptcode,
                 ctcode,
                 StartPoints,
                 EndPoints,
                 basedir,
                 modelname='modelavgreg'):
        """ with start and endpoints provided, calculate centerline and save as
        ssdf in basedir as model and dynamic model
        """
        #todo: name of dynamic model is now deforms, unclear, should be dynamic
        #import numpy as np
        import visvis as vv
        import numpy as np
        import os
        import copy

        from stentseg.utils import PointSet, _utils_GUI
        from stentseg.utils.centerline import (find_centerline,
                                               points_from_nodes_in_graph,
                                               points_from_mesh,
                                               smooth_centerline)
        from stentseg.utils.datahandling import loadmodel, loadvol
        from stentseg.utils.visualization import show_ctvolume
        from stentseg.utils.picker import pick3d

        stentnr = len(StartPoints)

        cropname = 'prox'
        what = modelname
        what_vol = 'avgreg'
        vismids = True
        m = loadmodel(basedir, ptcode, ctcode, cropname, what)
        s = loadvol(basedir, ptcode, ctcode, cropname, what_vol)
        s.vol.sampling = [s.sampling[1], s.sampling[1], s.sampling[2]]
        s.sampling = s.vol.sampling

        start1 = StartPoints.copy()
        ends = EndPoints.copy()

        from stentseg.stentdirect import stentgraph
        ppp = points_from_nodes_in_graph(m.model)

        allcenterlines = []  # for pp
        allcenterlines_nosmooth = []  # for pp
        centerlines = []  # for stentgraph
        nodes_total = stentgraph.StentGraph()
        for j in range(stentnr):
            if j == 0 or not start1[j] == ends[j - 1]:
                # if first stent or when stent did not continue with this start point
                nodes = stentgraph.StentGraph()
                centerline = PointSet(3)  # empty

            # Find main centerline
            # if j > 3: # for stent with midpoints
            #     centerline1 = find_centerline(ppp, start1[j], ends[j], step= 1,
            #     ndist=10, regfactor=0.5, regsteps=10, verbose=False)

            #else:
            centerline1 = find_centerline(ppp,
                                          start1[j],
                                          ends[j],
                                          step=1,
                                          ndist=10,
                                          regfactor=0.5,
                                          regsteps=1,
                                          verbose=False)
            # centerline1 is a PointSet

            print('Centerline calculation completed')

            # ========= Maaike =======
            smoothfactor = 15  # Mirthe used 2 or 4

            # check if cll continued here from last end point
            if not j == 0 and start1[j] == ends[j - 1]:
                # yes we continued
                ppart = centerline1[:
                                    -1]  # cut last but do not cut first point as this is midpoint
            else:
                # do not use first points, as they are influenced by user selected points
                ppart = centerline1[1:-1]

            for p in ppart:
                centerline.append(p)

            # if last stent or stent does not continue with next start-endpoint
            if j == stentnr - 1 or not ends[j] == start1[j + 1]:
                # store non-smoothed for vis
                allcenterlines_nosmooth.append(centerline)
                pp = smooth_centerline(centerline, n=smoothfactor)
                # add pp to list
                allcenterlines.append(pp)  # list with PointSet per centerline
                self.allcenterlines = allcenterlines

                # add pp as nodes
                for i, p in enumerate(pp):
                    p_as_tuple = tuple(p.flat)
                    nodes.add_node(p_as_tuple)
                    nodes_total.add_node(p_as_tuple)
                # add pp as one edge so that pathpoints are in fixed order
                pstart = tuple(pp[0].flat)
                pend = tuple(pp[-1].flat)
                nodes.add_edge(pstart, pend, path=pp)
                nodes_total.add_edge(pstart, pend, path=pp)
                # add final centerline nodes model to list
                centerlines.append(nodes)

            # ========= Maaike =======

        ## Store segmentation to disk

        # Build struct
        s2 = vv.ssdf.new()
        s2.sampling = s.sampling
        s2.origin = s.origin
        s2.stenttype = m.stenttype
        s2.croprange = m.croprange
        for key in dir(m):
            if key.startswith('meta'):
                suffix = key[4:]
                s2['meta' + suffix] = m['meta' + suffix]
        s2.what = what
        s2.params = s.params  #reg
        s2.paramsseeds = m.params
        s2.stentType = 'nellix'
        s2.StartPoints = StartPoints
        s2.EndPoints = EndPoints
        # keep centerlines as pp also [Maaike]
        s2.ppallCenterlines = allcenterlines
        for k in range(len(allcenterlines)):
            suffix = str(k)
            pp = allcenterlines[k]
            s2['ppCenterline' + suffix] = pp

        s3 = copy.deepcopy(s2)
        s3['model'] = nodes_total.pack()

        # Store model for each centerline
        for j in range(len(centerlines)):
            suffix = str(j)
            model = centerlines[j]
            s2['model' + suffix] = model.pack()

        # Save model with seperate centerlines.
        filename = '%s_%s_%s_%s.ssdf' % (ptcode, ctcode, cropname,
                                         'centerline_' + what)
        vv.ssdf.save(os.path.join(basedir, ptcode, filename), s2)
        print('saved to disk as {}.'.format(filename))

        # Save model with combined centerlines
        filename = '%s_%s_%s_%s.ssdf' % (ptcode, ctcode, cropname,
                                         'centerline_total_' + what)
        vv.ssdf.save(os.path.join(basedir, ptcode, filename), s3)
        print('saved to disk as {}.'.format(filename))

        # remove intermediate centerline points
        # start1 = map(tuple, start1)
        # ends = map(tuple, ends)
        startpoints_clean = copy.deepcopy(start1)
        endpoints_clean = copy.deepcopy(ends)
        duplicates = list(set(start1) & set(ends))
        for i in range(len(duplicates)):
            startpoints_clean.remove(duplicates[i])
            endpoints_clean.remove(duplicates[i])

        #Visualize
        f = vv.figure(10)
        vv.clf()
        a1 = vv.subplot(121)
        a1.daspect = 1, 1, -1

        vv.plot(ppp, ms='.', ls='', alpha=0.6, mw=2)
        for j in range(len(startpoints_clean)):
            vv.plot(PointSet(list(startpoints_clean[j])),
                    ms='.',
                    ls='',
                    mc='g',
                    mw=20)  # startpoint green
            vv.plot(PointSet(list(endpoints_clean[j])),
                    ms='.',
                    ls='',
                    mc='r',
                    mw=20)  # endpoint red
        for j in range(len(allcenterlines)):
            vv.plot(allcenterlines[j], ms='.', ls='', mw=10, mc='y')
        vv.title('Centerlines and seed points')
        vv.xlabel('x (mm)')
        vv.ylabel('y (mm)')
        vv.zlabel('z (mm)')
        # for j in range(len(allcenterlines_nosmooth)):
        #     vv.plot(allcenterlines_nosmooth[j], ms='o', ls='', mw=10, mc='c', alpha=0.6)

        a2 = vv.subplot(122)
        a2.daspect = 1, 1, -1

        vv.plot(ppp, ms='.', ls='', alpha=0.6, mw=2)
        # vv.volshow(s.vol, clim=clim, renderStyle = 'mip')
        t = show_ctvolume(s.vol,
                          axis=a2,
                          showVol='ISO',
                          clim=(0, 2500),
                          isoTh=250,
                          removeStent=False,
                          climEditor=True)
        label = pick3d(vv.gca(), s.vol)
        for j in range(len(startpoints_clean)):
            vv.plot(PointSet(list(startpoints_clean[j])),
                    ms='.',
                    ls='',
                    mc='g',
                    mw=20,
                    alpha=0.6)  # startpoint green
            vv.plot(PointSet(list(endpoints_clean[j])),
                    ms='.',
                    ls='',
                    mc='r',
                    mw=20,
                    alpha=0.6)  # endpoint red
        for j in range(len(allcenterlines)):
            vv.plot(allcenterlines[j], ms='o', ls='', mw=10, mc='y', alpha=0.6)

        # show midpoints (e.g. duplicates)
        if vismids:
            for p in duplicates:
                vv.plot(p[0], p[1], p[2], mc='m', ms='o', mw=10, alpha=0.6)

        a2.axis.visible = False

        vv.title('Centerlines and seed points')

        a1.camera = a2.camera

        f.eventKeyDown.Bind(
            lambda event: _utils_GUI.RotateView(event, [a1, a2]))
        f.eventKeyDown.Bind(
            lambda event: _utils_GUI.ViewPresets(event, [a1, a2]))

        # Pick node for midpoint to redo get_centerline
        self.pickedCLLpoint = _utils_GUI.Event_pick_graph_point(
            nodes_total, s.vol, label, nodesOnly=True)  # x,y,z
        # use key p to select point

        #===============================================================================
        vv.figure(11)
        vv.gca().daspect = 1, 1, -1
        t = show_ctvolume(s.vol,
                          showVol='ISO',
                          clim=(0, 2500),
                          isoTh=250,
                          removeStent=False,
                          climEditor=True)
        label2 = pick3d(vv.gca(), s.vol)
        for j in range(len(startpoints_clean)):
            vv.plot(PointSet(list(startpoints_clean[j])),
                    ms='.',
                    ls='',
                    mc='g',
                    mw=20,
                    alpha=0.6)  # startpoint green
            vv.plot(PointSet(list(endpoints_clean[j])),
                    ms='.',
                    ls='',
                    mc='r',
                    mw=20,
                    alpha=0.6)  # endpoint red
        vv.xlabel('x (mm)')
        vv.ylabel('y (mm)')
        vv.zlabel('z (mm)')
        #===============================================================================

        ## Make model dynamic (and store/overwrite to disk)
        import pirt
        from stentseg.motion.dynamic import incorporate_motion_nodes, incorporate_motion_edges

        # Load deforms
        filename = '%s_%s_%s_%s.ssdf' % (ptcode, ctcode, cropname, 'deforms')
        s1 = vv.ssdf.load(os.path.join(basedir, ptcode, filename))
        deformkeys = []
        for key in dir(s1):
            if key.startswith('deform'):
                deformkeys.append(key)
        deforms = [s1[key] for key in deformkeys]
        deforms = [
            pirt.DeformationFieldBackward(*fields) for fields in deforms
        ]
        for i in range(len(deforms)):
            deforms[i]._field_sampling = tuple(s1.sampling)
        paramsreg = s1.params

        # Load model
        s2 = loadmodel(basedir, ptcode, ctcode, cropname, 'centerline_' + what)
        s3 = loadmodel(basedir, ptcode, ctcode, cropname,
                       'centerline_total_' + what)

        # Combine ...
        for key in dir(s2):
            if key.startswith('model'):
                incorporate_motion_nodes(s2[key], deforms, s.origin)
                incorporate_motion_edges(s2[key], deforms, s.origin)
                model = s2[key]
                s2[key] = model.pack()
        # Combine ...
        for key in dir(s3):
            if key.startswith('model'):
                incorporate_motion_nodes(s3[key], deforms, s.origin)
                incorporate_motion_edges(s3[key], deforms, s.origin)
                model = s3[key]
                s3[key] = model.pack()

        # Save
        s2.paramsreg = paramsreg
        filename = '%s_%s_%s_%s.ssdf' % (ptcode, ctcode, cropname,
                                         'centerline_' + what + '_deforms')
        vv.ssdf.save(os.path.join(basedir, ptcode, filename), s2)
        print('saved to disk as {}.'.format(filename))

        # Save
        s3.paramsreg = paramsreg
        filename = '%s_%s_%s_%s.ssdf' % (
            ptcode, ctcode, cropname, 'centerline_total_' + what + '_deforms')
        vv.ssdf.save(os.path.join(basedir, ptcode, filename), s3)
        print('saved to disk as {}.'.format(filename))
Beispiel #17
0
                                        renal1_and_cl_point[0])

# Main outcome 1: distance 2nd ring valleys to renal
# Main outcome 2: migration 2nd ring valleys from discharge to 1, 6, 12 months

## Visualize
f = vv.figure(2)
vv.clf()
f.position = 0.00, 22.00, 1920.00, 1018.00
alpha = 0.5
if ctcode2:
    a1 = vv.subplot(121)
else:
    a1 = vv.gca()
show_ctvolume(vol1, model1, showVol=showVol, clim=clim0, isoTh=isoTh)
pick3d(vv.gca(), vol1)
model1.Draw(mc='b', mw=10, lc='g')
vm = vv.mesh(modelmesh1)
vm.faceColor = 'g'
# m = vv.mesh(vessel1)
# m.faceColor = (1,0,0, alpha) # red

# vis vessel, centerline, renal origo, peaks valleys R1
vv.plot(ppvessel1, ms='.', ls='', mc='r', alpha=0.2, mw=7, axes=a1)  # vessel
vv.plot(PointSet(list(c1_start1)), ms='.', ls='', mc='g', mw=18,
        axes=a1)  # start1
vv.plot([e[0] for e in c1_ends], [e[1] for e in c1_ends],
        [e[2] for e in c1_ends],
        ms='.',
        ls='',
        mc='b',
Beispiel #18
0
    model = s.model
    model2 = model.copy()

    # Load static CT image to add as reference
    s2 = loadvol(basedir, ptcode, ctcode, cropname, 'avgreg')
    vol = s2.vol

    f = vv.figure(1)
    vv.clf()
    a = vv.subplot(1, 2, 1)
    a.axis.axisColor = 1, 1, 1
    a.axis.visible = False
    a.bgcolor = 0, 0, 0
    a.daspect = 1, 1, -1
    t = vv.volshow(vol, clim=(0, 2500), renderStyle='mip')
    label = pick3d(a, vol)
    # model.Draw(mc='b', mw = 10, lc='g')
    vv.xlabel('x (mm)')
    vv.ylabel('y (mm)')
    vv.zlabel('z (mm)')
    vv.title('Model for LSPEAS %s  -  %s' % (ptcode[7:], ctcode))

    # get hooks and struts
    model_struts, model_hooks, model_R1R2, model_h_s, model_noHooks = get_model_struts(
        model, nstruts=8)
    model_R1R2.Draw(mc='r', mw=10, lc='r')
    model_noHooks.Draw(mc='b', mw=10, lc='b')
    model_struts.Draw(mc='y', mw=10, lc='y')

    a2 = vv.subplot(1, 2, 2)
    a2.axis.axisColor = 1, 1, 1