Beispiel #1
0
def run_sim():
    # Set up and run the simulations once, before the tests
    # analyze the results.

    ##################### First order irreversible #########################

    global KCST_foi, N_foi, tolerance_foi

    KCST_foi = 5              # The reaction constant
    N_foi = 50                # Can set count or conc

    NITER_foi = 1        # The number of iterations

    # Tolerance for the comparison. 
    tolerance_foi = 1e-3/100  

    ####################### First order reversible #########################

    global KCST_f_for, KCST_b_for, COUNT_for, tolerance_for

    KCST_f_for = 10.0         # The reaction constant
    KCST_b_for = 2.0

    COUNT_for = 100000        # Can set count or conc

    NITER_for = 1            # The number of iterations

    # Tolerance for the comparison. The only test where tolerance must
    # be relatively high    
    tolerance_for = 0.5/100

    ####################### Second order irreversible A2 ###################

    global KCST_soA2, CONCA_soA2, tolerance_soA2

    KCST_soA2 = 10.0e6        # The reaction constant

    CONCA_soA2 = 10.0e-6

    NITER_soA2 = 1         # The number of iterations

    tolerance_soA2 = 1.0e-3/100

    ####################### Second order irreversible AA ###################

    global KCST_soAA, CONCA_soAA, CONCB_soAA, tolerance_soAA
    
    KCST_soAA = 50.0e6        # The reaction constant
    
    CONCA_soAA = 20.0e-6
    CONCB_soAA = CONCA_soAA
    
    NITER_soAA = 1         # The number of iterations
    
    tolerance_soAA = 1.0e-3/100
    
    ####################### Second order irreversible AB ###################

    global KCST_soAB, CONCA_soAB, CONCB_soAB, tolerance_soAB

    KCST_soAB = 5.0e6         # The reaction constant

    CONCA_soAB = 1.0e-6
    n_soAB = 2
    CONCB_soAB = CONCA_soAB/n_soAB

    NITER_soAB = 1         # The number of iterations

    tolerance_soAB = 1.0e-3/100

    ####################### Third order irreversible A3 ###################

    global KCST_toA3, CONCA_toA3, tolerance_toA3
    
    KCST_toA3 = 1.0e12        # The reaction constant
    
    CONCA_toA3 = 100.0e-6
    
    NITER_toA3 = 1         # The number of iterations
    
    tolerance_toA3 = 1.0e-3/100

    ####################### Third order irreversible A2B ###################

    global KCST_toA2B, CONCA_toA2B, CONCB_toA2B, tolerance_toA2B
    
    KCST_toA2B = 0.1e12        # The reaction constant
    
    CONCA_toA2B = 30.0e-6
    CONCB_toA2B = 20.0e-6
    
    NITER_toA2B = 1         # The number of iterations
    
    tolerance_toA2B = 1.0e-3/100
        
    ####################### Second order irreversible 2D ###################

    global COUNTA_so2d, COUNTB_so2d, CCST_so2d, tolerance_so2d

    COUNTA_so2d = 100.0
    n_so2d=2.0
    COUNTB_so2d = COUNTA_so2d/n_so2d 

    KCST_so2d = 10.0e10       # The reaction constant

    AREA_so2d = 10.0e-12

    CCST_so2d = KCST_so2d/(6.02214179e23*AREA_so2d)


    NITER_so2d = 1         # The number of iterations

    tolerance_so2d = 1.0e-3/100

    ############################ Common parameters ########################

    global VOL

    DT = 0.1                  # Sampling time-step
    INT = 1.1                 # Sim endtime
    VOL = 9.0e-18

    NITER_max = 1

    ########################################################################

    mdl  = smod.Model()
    volsys = smod.Volsys('vsys',mdl)
    surfsys = smod.Surfsys('ssys',mdl)

    # First order irreversible
    A_foi = smod.Spec('A_foi', mdl)
    R1_foi = smod.Reac('R1_foi', volsys, lhs = [A_foi], rhs = [], kcst = KCST_foi)

    # First order reversible
    A_for = smod.Spec('A_for', mdl)
    B_for = smod.Spec('B_for', mdl)
    R1_for = smod.Reac('R1_for', volsys, lhs = [A_for], rhs = [B_for], kcst = KCST_f_for)
    R2_for = smod.Reac('R2_for', volsys, lhs = [B_for], rhs = [A_for], kcst = KCST_b_for)

    # Second order irreversible A2
    A_soA2 = smod.Spec('A_soA2', mdl)
    C_soA2 = smod.Spec('C_soA2', mdl)
    R1_soA2 = smod.Reac('R1_soA2', volsys, lhs = [A_soA2, A_soA2], rhs = [C_soA2], kcst = KCST_soA2)

    # Second order irreversible AA
    A_soAA = smod.Spec('A_soAA', mdl)
    B_soAA = smod.Spec('B_soAA', mdl)
    C_soAA = smod.Spec('C_soAA', mdl)
    R1_soAA = smod.Reac('R1_soAA', volsys, lhs = [A_soAA, B_soAA], rhs = [C_soAA], kcst = KCST_soAA)

    # Second order irreversible AB
    A_soAB = smod.Spec('A_soAB', mdl)
    B_soAB = smod.Spec('B_soAB', mdl)
    C_soAB = smod.Spec('C_soAB', mdl)
    R1_soAB = smod.Reac('R1_soAB', volsys, lhs = [A_soAB, B_soAB], rhs = [C_soAB], kcst = KCST_soAB)

    # Third order irreversible A3
    A_toA3 = smod.Spec('A_toA3', mdl)
    C_toA3 = smod.Spec('C_toA3', mdl)
    R1_toA3 = smod.Reac('R1_toA3', volsys, lhs = [A_toA3, A_toA3, A_toA3], rhs = [C_toA3], kcst = KCST_toA3)

    # Third order irreversible A2B
    A_toA2B = smod.Spec('A_toA2B', mdl)
    B_toA2B = smod.Spec('B_toA2B', mdl)
    C_toA2B = smod.Spec('C_toA2B', mdl)
    R1_toA3 = smod.Reac('R1_toA2B', volsys, lhs = [A_toA2B, A_toA2B, B_toA2B], rhs = [C_toA2B], kcst = KCST_toA2B)
        
    # Second order irreversible 2D
    A_so2d = smod.Spec('A_so2d', mdl)
    B_so2d = smod.Spec('B_so2d', mdl)
    C_so2d = smod.Spec('C_so2d', mdl)
    SR1_so2d = smod.SReac('SR1_so2d', surfsys, slhs = [A_so2d, B_so2d], srhs = [C_so2d], kcst = KCST_so2d)


    geom = sgeom.Geom()
    comp1 = sgeom.Comp('comp1', geom, VOL)
    comp1.addVolsys('vsys')
    patch1 = sgeom.Patch('patch1', geom, comp1, area = AREA_so2d)
    patch1.addSurfsys('ssys')


    rng = srng.create('r123', 512)
    rng.initialize(1000)


    sim = ssolv.Wmrk4(mdl, geom, rng)
    sim.setDT(0.00001)


    global tpnts, ntpnts
    tpnts = numpy.arange(0.0, INT, DT)
    ntpnts = tpnts.shape[0]


    res_m_foi = numpy.zeros([NITER_foi, ntpnts, 1])

    res_m_for = numpy.zeros([NITER_for, ntpnts, 2]) 

    res_m_soA2 = numpy.zeros([NITER_soA2, ntpnts, 2])

    res_m_soAA = numpy.zeros([NITER_soAA, ntpnts, 3])

    res_m_soAB = numpy.zeros([NITER_soAB, ntpnts, 3])

    res_m_toA3 = numpy.zeros([NITER_toA3, ntpnts, 2])

    res_m_toA2B = numpy.zeros([NITER_toA2B, ntpnts, 3])

    res_m_so2d = numpy.zeros([NITER_so2d, ntpnts, 3])


    for i in range (0, NITER_max):

        if i < NITER_foi: 
            sim.setCompCount('comp1', 'A_foi', N_foi)
        
        if i < NITER_for: 
            sim.setCompCount('comp1', 'A_for', COUNT_for)
            sim.setCompCount('comp1', 'B_for', 0.0)

        if i < NITER_soA2:
            sim.setCompConc('comp1', 'A_soA2', CONCA_soA2)

        if i < NITER_soAA:
            sim.setCompConc('comp1', 'A_soAA', CONCA_soAA)
            sim.setCompConc('comp1', 'B_soAA', CONCB_soAA)

        if i < NITER_soAB:
            sim.setCompConc('comp1', 'A_soAB', CONCA_soAB)
            sim.setCompConc('comp1', 'B_soAB', CONCB_soAB)
        
        if i < NITER_toA3:
            sim.setCompConc('comp1', 'A_toA3', CONCA_toA3)

        if i < NITER_toA2B:
            sim.setCompConc('comp1', 'A_toA2B', CONCA_toA2B)
            sim.setCompConc('comp1', 'B_toA2B', CONCB_toA2B)
                                    
        if i < NITER_so2d:
            sim.setPatchCount('patch1', 'A_so2d', COUNTA_so2d)
            sim.setPatchCount('patch1', 'B_so2d', COUNTB_so2d)
        
        for t in range(0, ntpnts):
            sim.run(tpnts[t])

            if i < NITER_foi: 
                res_m_foi[i, t, 0] = sim.getCompCount('comp1', 'A_foi')
            
            if i < NITER_for: 
                res_m_for[i, t, 0] = sim.getCompConc('comp1', 'A_for')*1e6
                res_m_for[i, t, 1] = sim.getCompConc('comp1', 'B_for')*1e6

            if i < NITER_soA2:
                res_m_soA2[i, t, 0] = sim.getCompConc('comp1', 'A_soA2')

            if i < NITER_soAA:
                res_m_soAA[i, t, 0] = sim.getCompConc('comp1', 'A_soAA')
                res_m_soAA[i, t, 1] = sim.getCompConc('comp1', 'B_soAA')
            
            if i < NITER_soAB:
                res_m_soAB[i, t, 0] = sim.getCompConc('comp1', 'A_soAB')
                res_m_soAB[i, t, 1] = sim.getCompConc('comp1', 'B_soAB')

            if i < NITER_toA3:
                res_m_toA3[i, t, 0] = sim.getCompConc('comp1', 'A_toA3')

            if i < NITER_toA2B:
                res_m_toA2B[i, t, 0] = sim.getCompConc('comp1', 'A_toA2B')
                res_m_toA2B[i, t, 1] = sim.getCompConc('comp1', 'B_toA2B')
                res_m_toA2B[i, t, 2] = sim.getCompConc('comp1', 'C_toA2B')
                        
            if i < NITER_so2d:
                res_m_so2d[i, t, 0] = sim.getPatchCount('patch1', 'A_so2d')
                res_m_so2d[i, t, 1] = sim.getPatchCount('patch1', 'B_so2d') 


    global mean_res_foi
    mean_res_foi = numpy.mean(res_m_foi, 0)

    global mean_res_for
    mean_res_for = numpy.mean(res_m_for, 0)

    global mean_res_soA2
    mean_res_soA2 = numpy.mean(res_m_soA2, 0)
    
    global mean_res_soAA
    mean_res_soAA = numpy.mean(res_m_soAA, 0)

    global mean_res_soAB
    mean_res_soAB = numpy.mean(res_m_soAB, 0)

    global mean_res_toA3
    mean_res_toA3 = numpy.mean(res_m_toA3, 0)

    global mean_res_toA2B
    mean_res_toA2B = numpy.mean(res_m_toA2B, 0)
    
    global mean_res_so2d
    mean_res_so2d = numpy.mean(res_m_so2d, 0)

    global ran_sim
    ran_sim = True
Beispiel #2
0
Pa = smodel.Spec('Pa', mdl)
Pb = smodel.Spec('Pb', mdl)
Pc = smodel.Spec('Pc', mdl)
Sa = smodel.Spec('Sa', mdl)
Sb = smodel.Spec('Sb', mdl)

#create the volume system
vsys = smodel.Volsys('vsys', mdl)

#surface system is similar to the valume system.
surfsys = smodel.Surfsys('ssys', mdl)

#the forward reaction without the forward binding reaction
A11_to_Oa_f = smodel.SReac('A11_to_Oa_f',
                           surfsys,
                           slhs=[A11],
                           srhs=[Oa],
                           kcst=1800)
Oa_to_Ob_f = smodel.SReac('Oa_to_Ob_f',
                          surfsys,
                          slhs=[Oa],
                          srhs=[Ob],
                          kcst=133)
Oc_to_Ia_f = smodel.SReac('Oc_to_Ia_f',
                          surfsys,
                          slhs=[Oc],
                          srhs=[Ia],
                          kcst=630)
A01_to_Pa_f = smodel.SReac('A01_to_Pa_f',
                           surfsys,
                           slhs=[A01],
Beispiel #3
0
diff_CBsf.setDcst(DCB)
diff_CBsCa = smodel.Diff('diff_CBsCa', vsys, CBsCa)
diff_CBsCa.setDcst(DCB)
diff_CBCaf = smodel.Diff('diff_CBCaf', vsys, CBCaf)
diff_CBCaf.setDcst(DCB)
diff_CBCaCa = smodel.Diff('diff_CBCaCa', vsys, CBCaCa)
diff_CBCaCa.setDcst(DCB)
diff_PV = smodel.Diff('diff_PV', vsys, PV)
diff_PV.setDcst(DPV)
diff_PVCa = smodel.Diff('diff_PVCa', vsys, PVCa)
diff_PVCa.setDcst(DPV)
diff_PVMg = smodel.Diff('diff_PVMg', vsys, PVMg)
diff_PVMg.setDcst(DPV)

#Pump
PumpD_f = smodel.SReac('PumpD_f', ssys, ilhs=[Ca], slhs=[Pump], srhs=[CaPump])
PumpD_f.setKcst(P_f_kcst)

PumpD_b = smodel.SReac('PumpD_b', ssys, slhs=[CaPump], irhs=[Ca], srhs=[Pump])
PumpD_b.setKcst(P_b_kcst)

PumpD_k = smodel.SReac('PumpD_k', ssys, slhs=[CaPump], srhs=[Pump])
PumpD_k.setKcst(P_k_kcst)

#iCBsf-fast
iCBsf1_f = smodel.Reac('iCBsf1_f',
                       vsys,
                       lhs=[Ca, iCBsf],
                       rhs=[iCBsCa],
                       kcst=iCBsf1_f_kcst)
iCBsf1_b = smodel.Reac('iCBsf1_b',
Beispiel #4
0
def run_sim():
    # Set up and run the simulations once, before the tests
    # analyze the results.

    ##################### First order irreversible #########################

    global KCST_foi, N_foi, tolerance_foi

    KCST_foi = 5  # The reaction constant
    N_foi = 50  # Can set count or conc

    NITER_foi = 100000  # The number of iterations

    # Tolerance for the comparison:
    # In test runs, with good code, < 1%  will fail with a 1.5% tolerance
    tolerance_foi = 2.0 / 100

    ####################### First order reversible #########################

    global KCST_f_for, KCST_b_for, COUNT_for, tolerance_for

    KCST_f_for = 10.0  # The reaction constant
    KCST_b_for = 2.0

    COUNT_for = 100000  # Can set count or conc

    NITER_for = 10  # The number of iterations

    # In test runs, with good code, <0.1% will fail with a tolerance of 1%
    tolerance_for = 1.0 / 100

    ####################### Second order irreversible AA ###################

    global KCST_soAA, CONCA_soAA, CONCB_soAA, tolerance_soAA

    KCST_soAA = 50.0e6  # The reaction constant

    CONCA_soAA = 20.0e-6
    CONCB_soAA = CONCA_soAA

    NITER_soAA = 1000  # The number of iterations

    # In test runs, with good code, <0.1% will fail with a tolerance of 1%
    tolerance_soAA = 1.0 / 100

    ####################### Second order irreversible AB ###################

    global KCST_soAB, CONCA_soAB, CONCB_soAB, tolerance_soAB

    KCST_soAB = 5.0e6  # The reaction constant

    CONCA_soAB = 1.0e-6
    n_soAB = 2
    CONCB_soAB = CONCA_soAB / n_soAB

    NITER_soAB = 1000  # The number of iterations

    # In test runs, with good code, <0.1% will fail with a tolerance of 1%
    tolerance_soAB = 1.0 / 100

    ####################### Second order irreversible 2D ###################

    global COUNTA_so2d, COUNTB_so2d, CCST_so2d, tolerance_so2d

    COUNTA_so2d = 100.0
    n_so2d = 2.0
    COUNTB_so2d = COUNTA_so2d / n_so2d

    KCST_so2d = 10.0e10  # The reaction constant

    AREA_so2d = 10.0e-12

    CCST_so2d = KCST_so2d / (6.02214179e23 * AREA_so2d)

    NITER_so2d = 1000  # The number of iterations

    # In tests fewer than 0.1% fail with tolerance of 2%
    tolerance_so2d = 2.0 / 100

    ############################ Common parameters ########################

    global VOL

    DT = 0.1  # Sampling time-step
    INT = 1.1  # Sim endtime
    VOL = 9.0e-18

    NITER_max = 100000

    ########################################################################

    mdl = smod.Model()
    volsys = smod.Volsys('vsys', mdl)
    surfsys = smod.Surfsys('ssys', mdl)

    # First order irreversible
    A_foi = smod.Spec('A_foi', mdl)
    R1_foi = smod.Reac('R1_foi', volsys, lhs=[A_foi], rhs=[], kcst=KCST_foi)

    # First order reversible
    A_for = smod.Spec('A_for', mdl)
    B_for = smod.Spec('B_for', mdl)
    R1_for = smod.Reac('R1_for',
                       volsys,
                       lhs=[A_for],
                       rhs=[B_for],
                       kcst=KCST_f_for)
    R2_for = smod.Reac('R2_for',
                       volsys,
                       lhs=[B_for],
                       rhs=[A_for],
                       kcst=KCST_b_for)

    # Second order irreversible AA
    A_soAA = smod.Spec('A_soAA', mdl)
    B_soAA = smod.Spec('B_soAA', mdl)
    C_soAA = smod.Spec('C_soAA', mdl)
    R1_soAA = smod.Reac('R1_soAA',
                        volsys,
                        lhs=[A_soAA, B_soAA],
                        rhs=[C_soAA],
                        kcst=KCST_soAA)

    # Second order irreversible AB
    A_soAB = smod.Spec('A_soAB', mdl)
    B_soAB = smod.Spec('B_soAB', mdl)
    C_soAB = smod.Spec('C_soAB', mdl)
    R1_soAB = smod.Reac('R1_soAB',
                        volsys,
                        lhs=[A_soAB, B_soAB],
                        rhs=[C_soAB],
                        kcst=KCST_soAB)

    # Second order irreversible 2D
    A_so2d = smod.Spec('A_so2d', mdl)
    B_so2d = smod.Spec('B_so2d', mdl)
    C_so2d = smod.Spec('C_so2d', mdl)
    SR1_so2d = smod.SReac('SR1_so2d',
                          surfsys,
                          slhs=[A_so2d, B_so2d],
                          srhs=[C_so2d],
                          kcst=KCST_so2d)

    geom = sgeom.Geom()
    comp1 = sgeom.Comp('comp1', geom, VOL)
    comp1.addVolsys('vsys')
    patch1 = sgeom.Patch('patch1', geom, comp1, area=AREA_so2d)
    patch1.addSurfsys('ssys')

    rng = srng.create('r123', 512)
    rng.initialize(1000)

    sim = ssolv.Wmdirect(mdl, geom, rng)
    sim.reset()

    global tpnts, ntpnts
    tpnts = numpy.arange(0.0, INT, DT)
    ntpnts = tpnts.shape[0]

    res_m_foi = numpy.zeros([NITER_foi, ntpnts, 1])
    res_std1_foi = numpy.zeros([ntpnts, 1])
    res_std2_foi = numpy.zeros([ntpnts, 1])

    res_m_for = numpy.zeros([NITER_for, ntpnts, 2])

    res_m_soAA = numpy.zeros([NITER_soAA, ntpnts, 3])

    res_m_soAB = numpy.zeros([NITER_soAB, ntpnts, 3])

    res_m_so2d = numpy.zeros([NITER_so2d, ntpnts, 3])

    for i in range(0, NITER_max):
        sim.reset()

        if i < NITER_foi:
            sim.setCompCount('comp1', 'A_foi', N_foi)

        if i < NITER_for:
            sim.setCompCount('comp1', 'A_for', COUNT_for)
            sim.setCompCount('comp1', 'B_for', 0.0)

        if i < NITER_soAA:
            sim.setCompConc('comp1', 'A_soAA', CONCA_soAA)
            sim.setCompConc('comp1', 'B_soAA', CONCB_soAA)

        if i < NITER_soAB:
            sim.setCompConc('comp1', 'A_soAB', CONCA_soAB)
            sim.setCompConc('comp1', 'B_soAB', CONCB_soAB)

        if i < NITER_so2d:
            sim.setPatchCount('patch1', 'A_so2d', COUNTA_so2d)
            sim.setPatchCount('patch1', 'B_so2d', COUNTB_so2d)

        for t in range(0, ntpnts):
            sim.run(tpnts[t])

            if i < NITER_foi:
                res_m_foi[i, t, 0] = sim.getCompCount('comp1', 'A_foi')

            if i < NITER_for:
                res_m_for[i, t, 0] = sim.getCompConc('comp1', 'A_for') * 1e6
                res_m_for[i, t, 1] = sim.getCompConc('comp1', 'B_for') * 1e6

            if i < NITER_soAA:
                res_m_soAA[i, t, 0] = sim.getCompConc('comp1', 'A_soAA')
                res_m_soAA[i, t, 1] = sim.getCompConc('comp1', 'B_soAA')

            if i < NITER_soAB:
                res_m_soAB[i, t, 0] = sim.getCompConc('comp1', 'A_soAB')
                res_m_soAB[i, t, 1] = sim.getCompConc('comp1', 'B_soAB')

            if i < NITER_so2d:
                res_m_so2d[i, t, 0] = sim.getPatchCount('patch1', 'A_so2d')
                res_m_so2d[i, t, 1] = sim.getPatchCount('patch1', 'B_so2d')

    global mean_res_foi, std_res_foi
    mean_res_foi = numpy.mean(res_m_foi, 0)
    std_res_foi = numpy.std(res_m_foi, 0)

    global mean_res_for
    mean_res_for = numpy.mean(res_m_for, 0)

    global mean_res_soAA
    mean_res_soAA = numpy.mean(res_m_soAA, 0)

    global mean_res_soAB
    mean_res_soAB = numpy.mean(res_m_soAB, 0)

    global mean_res_so2d
    mean_res_so2d = numpy.mean(res_m_so2d, 0)

    global ran_sim
    ran_sim = True
Beispiel #5
0
    def setUp(self):
        self.DCST = 0.08e-12

        self.model = smodel.Model()
        A = smodel.Spec('A', self.model)
        X = smodel.Spec('X', self.model)

        self.ssys1 = smodel.Surfsys('ssys1', self.model)
        self.ssys2 = smodel.Surfsys('ssys2', self.model)
    
        self.sreac = smodel.SReac('sreac', self.ssys1, slhs = [A], srhs = [A],  kcst = 1e5)
        self.diff1 = smodel.Diff('diffX1', self.ssys1, X, self.DCST)
        self.diff2 = smodel.Diff('diffX2', self.ssys2, X, self.DCST)

        if __name__ == "__main__":
            self.mesh = meshio.loadMesh('meshes/coin_10r_1h_13861')[0]
        else:
            self.mesh = meshio.loadMesh('sdiff_bugfix_test/meshes/coin_10r_1h_13861')[0]

        ntets = self.mesh.countTets()
        self.comp = sgeom.TmComp('cyto', self.mesh, range(ntets))

        alltris = self.mesh.getSurfTris()

        patchA_tris = []
        patchB_tris = []
        patchA_bars = set()
        patchB_bars = set()

        for t in alltris:
            vert0, vert1, vert2 = self.mesh.getTri(t)
            if (self.mesh.getVertex(vert0)[2] > 0.0 \
                and self.mesh.getVertex(vert1)[2] > 0.0 \
                and self.mesh.getVertex(vert2)[2] > 0.0):
                if self.mesh.getTriBarycenter(t)[0] > 0.0:
                    patchA_tris.append(t)
                    bar = self.mesh.getTriBars(t)
                    patchA_bars.add(bar[0])
                    patchA_bars.add(bar[1])
                    patchA_bars.add(bar[2])
                else:
                    patchB_tris.append(t)
                    bar = self.mesh.getTriBars(t)
                    patchB_bars.add(bar[0])
                    patchB_bars.add(bar[1])
                    patchB_bars.add(bar[2])

        self.patchA = sgeom.TmPatch('patchA', self.mesh, patchA_tris, icomp = self.comp)
        self.patchA.addSurfsys('ssys1')
        self.patchB = sgeom.TmPatch('patchB', self.mesh, patchB_tris, icomp = self.comp)
        self.patchB.addSurfsys('ssys2')

        # Find the set of bars that connect the two patches as the intersecting bars
        barsDB = patchA_bars.intersection(patchB_bars)
        barsDB=list(barsDB)

        # Create the surface diffusion boundary
        self.diffb = sgeom.SDiffBoundary('sdiffb', self.mesh, barsDB, [self.patchA, self.patchB])

        ctetidx = self.mesh.findTetByPoint([0.0, 0.0, 0.5e-6])
        ctet_trineighbs = self.mesh.getTetTriNeighb(ctetidx)
        self.ctri_idx=-1
        for t in ctet_trineighbs: 
            if t in patchA_tris+patchB_tris:
                self.ctri_idx = t

        self.rng = srng.create('r123', 512)
        self.rng.initialize(1000)
        
        self.solver = solv.Tetexact(self.model, self.mesh, self.rng)
Beispiel #6
0
def model(tissue):
    """ initialises model using tissue array """

    mdl = smodel.Model()
    unique_p = []
    for cell in tissue:
        [unique_p.append(p) for p in cell.prtcl_names if p not in unique_p]

    NP = []
    NPi = []
    NPR = []
    # Create particles and corresponding species
    for p in unique_p:
        # Free NPs
        NP.append(smodel.Spec('N{}'.format(p), mdl))
        # internalised NPs
        NPi.append(smodel.Spec('N{}i'.format(p), mdl))
        # complexes state: NPs bound to a cell receptor
        # NPR.append(smodel.Spec('N{}R'.format(p), mdl))

        # receptor state: 'naive' state (no bound NPs)
    R = smodel.Spec('R', mdl)
    NPR = smodel.Spec('NPR', mdl)
    d = {}
    rxn_ = {}
    dfsn_ = {}
    # Lpop where cell and particle properties are connected to reactions
    for n, cell in enumerate(tissue):
        for p_idx, p in enumerate(unique_p):
            tag = str(n) + p
            prtcl = getattr(cell, p)
            d["surfsys{}".format(tag)] = smodel.Surfsys(
                "surfsys{}".format(tag), mdl)
            d["volsys{}".format(tag)] = smodel.Volsys("volsys{}".format(tag),
                                                      mdl)
            k_diff = prtcl['D'] / (float(cell.S) * float(cell.S))

            dfsn_["frwd_{}".format(tag)] = smodel.SReac(
                "frwd_{}".format(tag),
                d["surfsys{}".format(tag)],
                ilhs=[NP[p_idx]],
                orhs=[NP[p_idx]],
                kcst=k_diff)
            dfsn_["bkwd_{}".format(tag)] = smodel.SReac(
                "bkwd_{}".format(tag),
                d["surfsys{}".format(tag)],
                olhs=[NP[p_idx]],
                irhs=[NP[p_idx]],
                kcst=k_diff)

            # binding reactions:
            if 'k_a' in prtcl:
                k_bind = prtcl['k_a']
                k_unbind = prtcl['k_d']
                k_intern = prtcl['k_i']
                rxn_["bind_{}".format(tag)] = smodel.Reac(
                    "bind_{}".format(tag),
                    d["volsys{}".format(tag)],
                    lhs=[NP[p_idx], R],
                    rhs=[NPR],
                    kcst=k_bind)
                rxn_["unbind_{}".format(tag)] = smodel.Reac(
                    "unbind_{}".format(tag),
                    d["volsys{}".format(tag)],
                    lhs=[NPR],
                    rhs=[NP[p_idx], R],
                    kcst=k_unbind)
                rxn_["intern_{}".format(tag)] = smodel.Reac(
                    "intern_{}".format(tag),
                    d["volsys{}".format(tag)],
                    lhs=[NPR],
                    rhs=[NPi[p_idx], R],
                    kcst=k_intern)

            # Diffusion
            dfsn1 = smodel.Diff('dfsn1',
                                d["volsys{}".format(tag)],
                                NP[p_idx],
                                dcst=k_diff)
            dfsn2 = smodel.Diff('dfsn2',
                                d["volsys{}".format(tag)],
                                NPR,
                                dcst=k_diff)
            dfsn3 = smodel.Diff('dfsn3',
                                d["volsys{}".format(tag)],
                                R,
                                dcst=k_diff)
            dfsn4 = smodel.Diff('dfsn4',
                                d["volsys{}".format(tag)],
                                NPi[p_idx],
                                dcst=k_diff)

    return mdl
Beispiel #7
0
# receptor state: Ca bound to two inactivation sites
R2Ca = smodel.Spec('R2Ca', mdl)

# receptor state: Ca bound to three inactivation sites
R3Ca = smodel.Spec('R3Ca', mdl)

# receptor state: Ca bound to four inactivation sites
R4Ca = smodel.Spec('R4Ca', mdl)
#######################################################

# Surface system
surfsys = smodel.Surfsys('ssys', mdl)

# The 'forward' binding reactions:

R_bind_IP3_f = smodel.SReac('R_bind_IP3_f', surfsys, olhs=[IP3], slhs=[R], srhs=[RIP3])

RIP3_bind_Ca_f = smodel.SReac('RIP3_bind_Ca_f', surfsys, olhs=[Ca], slhs=[RIP3], srhs = [Ropen])

R_bind_Ca_f = smodel.SReac('R_bind_Ca_f', surfsys, olhs=[Ca], slhs=[R], srhs=[RCa])

RCa_bind_Ca_f = smodel.SReac('RCa_bind_Ca_f', surfsys, olhs=[Ca], slhs=[RCa],srhs = [R2Ca])

R2Ca_bind_Ca_f = smodel.SReac('R2Ca_bind_Ca_f', surfsys, olhs=[Ca], slhs= [R2Ca], srhs = [R3Ca])

R3Ca_bind_Ca_f = smodel.SReac('R3Ca_bind_ca_f', surfsys, olhs=[Ca], slhs=[R3Ca], srhs=[R4Ca])

# The 'backward' unbinding reactions:

R_bind_IP3_b = smodel.SReac('R_bind_IP3_b', surfsys, slhs=[RIP3], orhs=[IP3], srhs=[R])
    def setUp(self):
        mdl = smodel.Model()

        S1 = smodel.Spec('S1', mdl)

        vsys = smodel.Volsys('vsys', mdl)
        ssys = smodel.Surfsys('ssys', mdl)

        smodel.Reac('R01', vsys, lhs=[S1], rhs=[S1], kcst=1)
        smodel.SReac('SR01', ssys, slhs=[S1], srhs=[S1], kcst=1)

        vrange = [-200.0e-3, 50e-3, 1e-3]
        vrate = lambda v: 2.0
        Chan1 = smodel.Chan('Chan1', mdl)
        chanop = smodel.ChanState('chanop', mdl, Chan1)
        chancl = smodel.ChanState('chancl', mdl, Chan1)
        smodel.VDepSReac('VDSR01',
                         ssys,
                         slhs=[chancl],
                         srhs=[chanop],
                         k=vrate,
                         vrange=vrange)
        smodel.VDepSReac('VDSR02',
                         ssys,
                         srhs=[chancl],
                         slhs=[chanop],
                         k=vrate,
                         vrange=vrange)

        Chan1_Ohm_I = smodel.OhmicCurr('Chan1_Ohm_I',
                                       ssys,
                                       chanstate=chanop,
                                       g=20e-12,
                                       erev=-77e-3)

        if __name__ == "__main__":
            self.mesh = meshio.importAbaqus('meshes/test.inp', 1e-7)[0]
        else:
            self.mesh = meshio.importAbaqus(
                'missing_solver_methods_test/meshes/test.inp', 1e-7)[0]

        comp1 = sgeom.TmComp('comp1', self.mesh, range(self.mesh.countTets()))
        comp1.addVolsys('vsys')

        patch1 = sgeom.TmPatch('patch1', self.mesh, self.mesh.getSurfTris(),
                               comp1)
        patch1.addSurfsys('ssys')

        self.c1ROIInds = range(10)
        self.p1ROIInds = range(5)
        self.mesh.addROI('comp1ROI', sgeom.ELEM_TET, self.c1ROIInds)
        self.mesh.addROI('patch1ROI', sgeom.ELEM_TRI, self.p1ROIInds)

        membrane = sgeom.Memb('membrane', self.mesh, [patch1], opt_method=1)

        rng = srng.create('mt19937', 512)
        rng.initialize(1234)

        tet_hosts = gd.linearPartition(self.mesh, [1, 1, steps.mpi.nhosts])
        tri_hosts = gd.partitionTris(self.mesh, tet_hosts,
                                     self.mesh.getSurfTris())

        self.sim = ssolver.TetOpSplit(mdl, self.mesh, rng, ssolver.EF_DEFAULT,
                                      tet_hosts, tri_hosts)
        self.sim.setEfieldDT(1e-4)

        self.sim.reset()
Beispiel #9
0
def getModel():
    # Create model container
    mdl = smod.Model()

    # Create chemical species
    ca = smod.Spec('ca', mdl)
    ip3 = smod.Spec('ip3', mdl)
    plc = smod.Spec('plc', mdl)

    # Create calcium buffers
    GCaMP6s = smod.Spec('GCaMP6s', mdl)
    ca_GCaMP6s = smod.Spec('ca_GCaMP6s', mdl)

    # Create IP3R states species
    unb_IP3R = smod.Spec('unb_IP3R', mdl)
    ip3_IP3R = smod.Spec('ip3_IP3R', mdl)
    caa_IP3R = smod.Spec('caa_IP3R', mdl)
    cai_IP3R = smod.Spec('cai_IP3R', mdl)
    open_IP3R = smod.Spec('open_IP3R', mdl)
    cai_ip3_IP3R = smod.Spec('cai_ip3_IP3R', mdl)
    ca2_IP3R = smod.Spec('ca2_IP3R', mdl)
    ca2_ip3_IP3R = smod.Spec('ca2_ip3_IP3R', mdl)

    # ER surface sys
    ssys = smod.Surfsys('ssys', mdl)

    # plasma membrane surface
    mb_surf = smod.Surfsys('mb_surf', mdl)

    # Create volume system
    # cytosol volume system
    vsys = smod.Volsys('vsys', mdl)

    # ER volume system
    er_vsys = smod.Volsys('er_vsys', mdl)

    ##################################
    ##### DEFINE DIFFUSION RULES #####
    ##################################

    # Diffusion constants
    # Diffusion constant of Calcium (buffered)
    DCST = 0.013e-9
    # Diffusion constant of IP3
    DIP3 = 0.280e-9
    # Diffusion constant of GCaMP6s
    DGCAMP = 0.050e-9

    diff_freeca = smod.Diff('diff_freeca', vsys, ca, DCST)
    diff_ip3 = smod.Diff('diff_ip3', vsys, ip3, DIP3)

    diff_GCaMP6s = smod.Diff('diff_GCaMP6s', vsys, GCaMP6s, DGCAMP)
    diff_ca_GCaMP6s = smod.Diff('diff_ca_GCaMP6s', vsys, ca_GCaMP6s, DGCAMP)

    ##################################
    ######## DEFINE REACTIONS ########
    ##################################
    #### Calcium in and out and Buffering Reactions ####

    # Ca -> null
    ca_deg = smod.Reac('ca_deg', vsys, lhs=[ca])

    # Ca leak
    ca_leak = smod.Reac('ca_leak', vsys, rhs=[ca])

    # Calcium binding to GCaMP6s molecules

    GCaMP6s_bind_ca_f = smod.Reac('GCaMP6s_bind_ca_f', vsys, \
                                lhs=[ca, GCaMP6s], rhs=[ca_GCaMP6s])
    GCaMP6s_bind_ca_b = smod.Reac('GCaMP6s_bind_ca_b', vsys, \
                                lhs=[ca_GCaMP6s], rhs=[GCaMP6s, ca])

    #### IP3 Influx and Buffering Reactions ######
    # IP3 leak
    ip3_leak = smod.Reac('ip3_leak', vsys, rhs=[ip3])

    # IP3 degradation
    ip3_deg = smod.Reac('ip3_deg', vsys, lhs=[ip3])

    # ca activating plc_delta-dependent IP3 synthesis
    plc_ip3_synthesis = smod.SReac('plc_ip3_synthesis', mb_surf, \
                                   slhs=[plc], ilhs= [ca], srhs=[plc], irhs= [ca, ip3])

    ##### IP3R kinetics #####
    # surface/volume reaction ca from cytosol binds activating IP3R site on unbound IP3R
    unb_IP3R_bind_caa_f = smod.SReac('unb_IP3R_bind_caa_f', ssys,\
                                     ilhs=[ca], slhs=[unb_IP3R], srhs=[caa_IP3R])
    unb_IP3R_bind_caa_b = smod.SReac('unb_IP3R_bind_caa_b', ssys, \
                                     slhs=[caa_IP3R], srhs=[unb_IP3R], irhs=[ca])

    # surface/volume reaction ca from cytosol binds inactivating IP3R site on unbound IP3R
    unb_IP3R_bind_cai_f = smod.SReac('unb_IP3R_bind_cai_f', ssys, \
                                     ilhs=[ca], slhs=[unb_IP3R], srhs=[cai_IP3R])
    unb_IP3R_bind_cai_b = smod.SReac('unb_IP3R_bind_cai_b', ssys, \
                                     slhs=[cai_IP3R], srhs=[unb_IP3R], irhs=[ca])

    # surface/volume reaction ca from cytosol binds activating IP3R site on caa_IP3R
    caa_IP3R_bind_ca_f = smod.SReac('caa_IP3R_bind_ca_f', ssys, \
                                    ilhs=[ca], slhs=[caa_IP3R], srhs=[ca2_IP3R])
    caa_IP3R_bind_ca_b = smod.SReac('caa_IP3R_bind_ca_b', ssys, \
                                    slhs=[ca2_IP3R], srhs=[caa_IP3R], irhs=[ca])

    # surface/volume reaction ca from cytosol binds activating IP3R site on ip3_IP3R
    ip3_IP3R_bind_caa_f = smod.SReac('ip3_IP3R_bind_caa_f', ssys, \
                                     ilhs=[ca], slhs=[ip3_IP3R], srhs=[open_IP3R])
    ip3_IP3R_bind_caa_b = smod.SReac('ip3_IP3R_bind_caa_b', ssys, \
                                     slhs=[open_IP3R], srhs=[ip3_IP3R], irhs=[ca])

    # surface/volume reaction ca from cytosol binds inactivating IP3R site on ip3_IP3R
    ip3_IP3R_bind_cai_f = smod.SReac('ip3_IP3R_bind_cai_f', ssys, \
                                     ilhs=[ca], slhs=[ip3_IP3R], srhs=[cai_ip3_IP3R])
    ip3_IP3R_bind_cai_b = smod.SReac('ip3_IP3R_bind_cai_b', ssys, \
                                     slhs=[cai_ip3_IP3R], srhs=[ip3_IP3R], irhs=[ca])

    # surface/volume reaction ca from cytosol binds activating IP3R site on cai_IP3R
    cai_IP3R_bind_ca_f = smod.SReac('cai_IP3R_bind_ca_f', ssys, \
                                    ilhs=[ca], slhs=[cai_IP3R], srhs=[ca2_IP3R])
    cai_IP3R_bind_ca_b = smod.SReac('cai_IP3R_bind_ca_b', ssys, \
                                    slhs=[ca2_IP3R], srhs=[cai_IP3R], irhs=[ca])

    # surface/volume reaction ca from cytosol binds inactivating IP3R site on open_IP3R
    open_IP3R_bind_ca_f = smod.SReac('open_IP3R_bind_ca_f', ssys, \
                                     ilhs=[ca], slhs=[open_IP3R], srhs=[ca2_ip3_IP3R])
    open_IP3R_bind_ca_b = smod.SReac('open_IP3R_bind_ca_b', ssys, \
                                     slhs=[ca2_ip3_IP3R], srhs=[open_IP3R], irhs=[ca])

    # surface/volume reaction ca from cytosol binds activating IP3R site on cai_ip3_IP3R
    cai_ip3_IP3R_bind_ca_f = smod.SReac('cai_ip3_IP3R_bind_ca_f', ssys, \
                                        ilhs=[ca], slhs=[cai_ip3_IP3R], srhs=[ca2_ip3_IP3R])
    cai_ip3_IP3R_bind_ca_b = smod.SReac('cai_ip3_IP3R_bind_ca_b', ssys, \
                                        slhs=[ca2_ip3_IP3R], srhs=[cai_ip3_IP3R], irhs=[ca])

    # surface/volume reaction ip3 from cytosol binds unb_IP3R
    unb_IP3R_bind_ip3_f = smod.SReac('unb_IP3R_bind_ip3_f', ssys, \
                                     ilhs=[ip3], slhs=[unb_IP3R], srhs=[ip3_IP3R])
    unb_IP3R_bind_ip3_b = smod.SReac('unb_IP3R_bind_ip3_b', ssys, \
                                     slhs=[ip3_IP3R], srhs=[unb_IP3R], irhs=[ip3])

    # surface/volume reaction ip3 from cytosol binds caa_IP3R
    caa_IP3R_bind_ip3_f = smod.SReac('caa_IP3R_bind_ip3_f', ssys, \
                                     ilhs=[ip3], slhs=[caa_IP3R], srhs=[open_IP3R])
    caa_IP3R_bind_ip3_b = smod.SReac('caa_IP3R_bind_ip3_b', ssys, \
                                     slhs=[open_IP3R], srhs=[caa_IP3R], irhs=[ip3])

    # surface/volume reaction ip3 from cytosol binds cai_IP3R
    cai_IP3R_bind_ip3_f = smod.SReac('cai_IP3R_bind_ip3_f', ssys, \
                                     ilhs=[ip3], slhs=[cai_IP3R], srhs=[cai_ip3_IP3R])
    cai_IP3R_bind_ip3_b = smod.SReac('cai_IP3R_bind_ip3_b', ssys, \
                                     slhs=[cai_ip3_IP3R], srhs=[cai_IP3R], irhs=[ip3])

    # surface/volume reaction ip3 from cytosol binds ca2_IP3R
    ca2_IP3R_bind_ip3_f = smod.SReac('ca2_IP3R_bind_ip3_f', ssys, \
                                     ilhs=[ip3], slhs=[ca2_IP3R], srhs=[ca2_ip3_IP3R])
    ca2_IP3R_bind_ip3_b = smod.SReac('ca2_IP3R_bind_ip3_b', ssys, \
                                     slhs=[ca2_ip3_IP3R], srhs=[ca2_IP3R], irhs=[ip3])

    ##### Ca ions passing through open IP3R channel to cytosol #####
    Ca_IP3R_flux = smod.SReac('R_Ca_channel_f', ssys, \
                              slhs=[open_IP3R], irhs=[ca], srhs=[open_IP3R])

    ##################################
    #### REACTION CONSTANT VALUES ####
    ##################################

    ##### Calcium Influx and Buffering Reactions #####

    # GCaMP6s mediated calcium buffering
    GCaMP6s_bind_ca_f.setKcst(7.78e6)
    GCaMP6s_bind_ca_b.setKcst(1.12)

    ############# VALUES FOR GCAMP6f #################
    ####    GCaMP6s_bind_ca_f.setKcst(1.05e7)	  ####
    ####    GCaMP6s_bind_ca_b.setKcst(3.93)	  ####
    ##################################################

    # Ca ->  null
    ca_deg.setKcst(30)

    # Ca leak
    ca_leak.setKcst(15e-8)

    ##### IP3 Influx and Buffering Reactions #####
    # IP3 leak does not exist in this model. IP3 synthesis only occurs through PLC activity

    # IP3 -> null
    ip3_deg.setKcst(1.2e-4)

    # ca activating plc_delta-dependent IP3 synthesis
    plc_ip3_synthesis.setKcst(1)

    #### IP3R kinetics #####
    caa_f = 1.2e6
    cai_f = 1.6e4
    ip3_f = 4.1e7
    caa_b = 5e1
    cai_b = 1e2
    ip3_b = 4e2
    unb_IP3R_bind_caa_f.setKcst(caa_f)
    unb_IP3R_bind_caa_b.setKcst(caa_b)

    unb_IP3R_bind_cai_f.setKcst(cai_f)
    unb_IP3R_bind_cai_b.setKcst(cai_b)

    caa_IP3R_bind_ca_f.setKcst(cai_f)
    caa_IP3R_bind_ca_b.setKcst(cai_b)

    ip3_IP3R_bind_caa_f.setKcst(caa_f)
    ip3_IP3R_bind_caa_b.setKcst(caa_b)

    ip3_IP3R_bind_cai_f.setKcst(cai_f)
    ip3_IP3R_bind_cai_b.setKcst(cai_b)

    cai_IP3R_bind_ca_f.setKcst(caa_f)
    cai_IP3R_bind_ca_b.setKcst(caa_b)

    open_IP3R_bind_ca_f.setKcst(cai_f)
    open_IP3R_bind_ca_b.setKcst(cai_b)

    unb_IP3R_bind_ip3_f.setKcst(ip3_f)
    unb_IP3R_bind_ip3_b.setKcst(ip3_b)

    caa_IP3R_bind_ip3_f.setKcst(ip3_f)
    caa_IP3R_bind_ip3_b.setKcst(ip3_b)

    cai_IP3R_bind_ip3_f.setKcst(ip3_f)
    cai_IP3R_bind_ip3_b.setKcst(ip3_b)

    cai_ip3_IP3R_bind_ca_f.setKcst(caa_f)
    cai_ip3_IP3R_bind_ca_b.setKcst(caa_b)

    ca2_IP3R_bind_ip3_f.setKcst(ip3_f)
    ca2_IP3R_bind_ip3_b.setKcst(ip3_b)

    # Ca ions passing through open IP3R channel
    Ca_IP3R_flux.setKcst(6e3)

    return mdl
Beispiel #10
0
RI2 = smodel.Spec('RI2', mdl)
RI3 = smodel.Spec('RI3', mdl)

P = smodel.Spec('P', mdl)  #naive state 1
PI = smodel.Spec('PI', mdl)
PI2 = smodel.Spec('PI2', mdl)
PI3 = smodel.Spec('PI3', mdl)

C1 = smodel.Spec('C1', mdl)
O1 = smodel.Spec('O1', mdl)  # open state 1
O2 = smodel.Spec('O2', mdl)  # open state 1

# REACTIONS

#1 R <=> P
reac1_f = smodel.SReac('R_P', surfsys, slhs=[R], srhs=[P])
reac1_b = smodel.SReac('P_R', surfsys, slhs=[P], srhs=[R])

#2 R + IP3 <=> RI
reac2_f = smodel.SReac('R_RI', surfsys, olhs=[IP3], slhs=[R], srhs=[RI])
reac2_b = smodel.SReac('RI_R', surfsys, slhs=[RI], orhs=[IP3], srhs=[R])

#3 RI + IP3 <=> RI2
reac3_f = smodel.SReac('RI_RI2', surfsys, olhs=[IP3], slhs=[RI], srhs=[RI2])
reac3_b = smodel.SReac('RI2_RI', surfsys, slhs=[RI2], orhs=[IP3], srhs=[RI])

#4 RI2 + IP3 <=> RI3
reac4_f = smodel.SReac('RI2_RI3', surfsys, olhs=[IP3], slhs=[RI2], srhs=[RI3])
reac4_b = smodel.SReac('RI3_RI2', surfsys, slhs=[RI3], orhs=[IP3], srhs=[RI2])

#5 RI3 + IP3 <=> O1
Beispiel #11
0
# ser_x0y0 = smodel.SReac('ser_x0y0', surfsys2, slhs=[SERCA_X0Ca], srhs=[SERCA_Y0Ca]           , kcst=kx0y0)

# ////////////////////////////////////////////////////////////////////////////////////////////////////////
# Ca + SERCA <->  Ca1SERCA +Ca <->  Ca2SERCA  ->  SERCA

DCST_MEM = 0.05e-12

SERCA = smodel.Spec('SERCA', model)
CaSERCA = smodel.Spec('CaSERCA',model)
Ca2SERCA = smodel.Spec('Ca2SERCA',model)

diff_SERCA = smodel.Diff('diff_SERCA', surfsys2, SERCA,  DCST_MEM)
diff_CaSERCA = smodel.Diff('diff_CaSERCA', surfsys2, CaSERCA,  DCST_MEM)
diff_Ca2SERCA = smodel.Diff('diff_Ca2SERCA', surfsys2, Ca2SERCA,  DCST_MEM)

Reac9  = smodel.SReac('Reac9',  surfsys2, olhs=[Ca], slhs=[SERCA], srhs=[CaSERCA], kcst=17147e6)
Reac10 = smodel.SReac('Reac10', surfsys2, slhs=[CaSERCA], orhs=[Ca], srhs=[SERCA], kcst=8426.3)
Reac11 = smodel.SReac('Reac11', surfsys2, olhs=[Ca], slhs=[CaSERCA], srhs=[Ca2SERCA], kcst=17147e6)
Reac12 = smodel.SReac('Reac12', surfsys2, slhs=[Ca2SERCA], orhs=[Ca], srhs=[CaSERCA], kcst=8426.3)
Reac13 = smodel.SReac('Reac13', surfsys2, slhs=[Ca2SERCA], srhs=[SERCA], irhs=[Ca,Ca], kcst=250)
# ////////////////////////////////////////////////////////////////////////////////////////////////////////

# PMCA species:
PMCA_P0 = smodel.Spec('PMCA_P0', model)
PMCA_P1 = smodel.Spec('PMCA_P1', model)

k1_pmca = 1.5e8
k2_pmca = 15
k3_pmca = 12
kl_pmca = 4.3
def test_soirev2d():
    VOL = 1.0e-18

    COUNTA = 100.0
    n=2.0
    COUNTB = COUNTA/n 


    KCST = 10.0e10			# The reaction constant

    AREA = 10.0e-12

    CCST = KCST/(6.02214179e23*AREA)


    NITER = 1000			# The number of iterations
    DT = 0.05			# Sampling time-step
    INT = 1.05			# Sim endtime

    # In tests fewer than 0.1% fail with tolerance of 2%
    tolerance = 2.0/100

    ########################################################################

    mdl  = smod.Model()

    A = smod.Spec('A', mdl)
    B = smod.Spec('B', mdl)
    C = smod.Spec('C', mdl)

    surfsys = smod.Surfsys('ssys',mdl)

    SR1 = smod.SReac('SR1', surfsys, slhs = [A, B], srhs = [C], kcst = KCST)

    geom = sgeom.Geom()

    comp1 = sgeom.Comp('comp1', geom, VOL)
    patch1 = sgeom.Patch('patch1', geom, comp1, area = AREA)
    patch1.addSurfsys('ssys')

    import random
    rng = srng.create('mt19937', 1000)
    rng.initialize(int(random.random()*4294967295))


    sim = ssolv.Wmdirect(mdl, geom, rng)
    sim.reset()

    tpnts = numpy.arange(0.0, INT, DT)
    ntpnts = tpnts.shape[0]

    res_m = numpy.zeros([NITER, ntpnts, 3])

    for i in range (0, NITER):
        sim.restore('./validation_cp/cp/second_order_irev_2D')
        for t in range(0, ntpnts):
            sim.run(tpnts[t])
            res_m[i, t, 0] = sim.getPatchCount('patch1', 'A')
            res_m[i, t, 1] = sim.getPatchCount('patch1', 'B')       

    mean_res = numpy.mean(res_m, 0)

    lnBA = numpy.zeros(ntpnts)
    lineAB = numpy.zeros(ntpnts)

    C = COUNTA-COUNTB
    passed  =True
    max_err = 0.0

    for i in range(ntpnts):
        A = mean_res[i][0]
        B = mean_res[i][1]
        lnBA[i] = math.log(B/A)
        lineAB[i] = math.log(COUNTB/COUNTA) -C*CCST*tpnts[i]
        assert(tol_funcs.tolerable(lnBA[i], lineAB[i], tolerance))
A11 = smodel.Spec('A11', mdl)
Pa = smodel.Spec('Pa', mdl)
Pb = smodel.Spec('Pb', mdl)
Pc = smodel.Spec('Pc', mdl)
Sa = smodel.Spec('Sa', mdl)
Sb = smodel.Spec('Sb', mdl)
Oa = smodel.Spec('Oa', mdl)
Ob = smodel.Spec('Ob', mdl)
Oc = smodel.Spec('Oc', mdl)
Ia = smodel.Spec('Ia', mdl)
Ib = smodel.Spec('Ib', mdl)

# REACTIONS

#1 Sa + Ca <=> Sb
reac1_f = smodel.SReac('Sa_Sb', surfsys, olhs=[Ca], slhs=[Sa], srhs=[Sb])
reac1_b = smodel.SReac('Sb_Sa', surfsys, slhs=[Sb], orhs=[Ca], srhs=[Sa])

#2 Pc <=> Sa
reac2_f = smodel.SReac('Pc_Sa', surfsys, slhs=[Pc], srhs=[Sa])
reac2_b = smodel.SReac('Sa_Pc', surfsys, slhs=[Sa], srhs=[Pc])

#3 Pb + Ca_ER <=> Pc
reac3_f = smodel.SReac('Pb_Pc', surfsys, ilhs=[Ca], slhs=[Pb], srhs=[Pc])
reac3_b = smodel.SReac('Pc_Pb', surfsys, slhs=[Pc], irhs=[Ca], srhs=[Pb])

#4 Pa <=> Pb
reac4_f = smodel.SReac('Pa_Pb', surfsys, slhs=[Pa], srhs=[Pb])
reac4_b = smodel.SReac('Pb_Pa', surfsys, slhs=[Pb], srhs=[Pa])

#5 A01 <=> Pa
# Mg
Mg = smodel.Spec('Mg', mdl_WM)

ssys_diff = smodel.Surfsys('ssys_diff', mdl_WM)

ssys_chans = smodel.Surfsys('ssys_chans', mdl_WM)

vsys_buffs = smodel.Volsys('vsys_buffs', mdl_WM)

#for EField
ssys_stoch = smodel.Surfsys('ssys_stoch', mdl_stoch)

# Diffusions
diff_Ca_inward = smodel.SReac('diff_Ca_inward',
                              ssys_diff,
                              olhs=[Ca],
                              irhs=[Ca],
                              kcst=0)
diff_Ca_outward = smodel.SReac('diff_Ca_outward',
                               ssys_diff,
                               ilhs=[Ca],
                               orhs=[Ca],
                               kcst=0)

diff_CBsf_inward = smodel.SReac('diff_CBsf_inward',
                                ssys_diff,
                                olhs=[CBsf],
                                irhs=[CBsf],
                                kcst=0)
diff_CBsf_outward = smodel.SReac('diff_CBsf_outward',
                                 ssys_diff,
diff_CBsCa.setDcst(DCB)
diff_CBCaf = smodel.Diff('diff_CBCaf', vsys_stoch, CBCaf)
diff_CBCaf.setDcst(DCB)
diff_CBCaCa = smodel.Diff('diff_CBCaCa', vsys_stoch, CBCaCa)
diff_CBCaCa.setDcst(DCB)
diff_PV = smodel.Diff('diff_PV', vsys_stoch, PV)
diff_PV.setDcst(DPV)
diff_PVCa = smodel.Diff('diff_PVCa', vsys_stoch, PVCa)
diff_PVCa.setDcst(DPV)
diff_PVMg = smodel.Diff('diff_PVMg', vsys_stoch, PVMg)
diff_PVMg.setDcst(DPV)

#Pump
PumpD_f = smodel.SReac('PumpD_f',
                       ssys_det,
                       ilhs=[Ca_det],
                       slhs=[Pump],
                       srhs=[CaPump])
PumpD_f.setKcst(P_f_kcst)

PumpD_b = smodel.SReac('PumpD_b',
                       ssys_det,
                       slhs=[CaPump],
                       irhs=[Ca_det],
                       srhs=[Pump])
PumpD_b.setKcst(P_b_kcst)

PumpD_k = smodel.SReac('PumpD_k', ssys_det, slhs=[CaPump], srhs=[Pump])
PumpD_k.setKcst(P_k_kcst)

#iCBsf-fast
Beispiel #16
0
def getModel():
    mdl = smodel.Model()

    # Calcium
    Ca = smodel.Spec('Ca', mdl)

    # Pump
    Pump = smodel.Spec('Pump', mdl)
    # CaPump
    CaPump = smodel.Spec('CaPump', mdl)

    # iCBsf
    iCBsf = smodel.Spec('iCBsf', mdl)
    # iCBsCa
    iCBsCa = smodel.Spec('iCBsCa', mdl)
    # iCBCaf
    iCBCaf = smodel.Spec('iCBCaf', mdl)
    # iCBCaCa
    iCBCaCa = smodel.Spec('iCBCaCa', mdl)

    # CBsf
    CBsf = smodel.Spec('CBsf', mdl)
    # CBsCa
    CBsCa = smodel.Spec('CBsCa', mdl)
    # CBCaf
    CBCaf = smodel.Spec('CBCaf', mdl)
    # CBCaCa
    CBCaCa = smodel.Spec('CBCaCa', mdl)

    # PV
    PV = smodel.Spec('PV', mdl)
    # PVMg
    PVMg = smodel.Spec('PVMg', mdl)
    # PVCa
    PVCa = smodel.Spec('PVCa', mdl)
    # Mg
    Mg = smodel.Spec('Mg', mdl)

    # Vol/surface systems
    vsys = smodel.Volsys('vsys', mdl)
    ssys = smodel.Surfsys('ssys', mdl)

    diff_Ca = smodel.Diff('diff_Ca', vsys, Ca)
    diff_Ca.setDcst(DCST)
    diff_CBsf = smodel.Diff('diff_CBsf', vsys, CBsf)
    diff_CBsf.setDcst(DCB)
    diff_CBsCa = smodel.Diff('diff_CBsCa', vsys, CBsCa)
    diff_CBsCa.setDcst(DCB)
    diff_CBCaf = smodel.Diff('diff_CBCaf', vsys, CBCaf)
    diff_CBCaf.setDcst(DCB)
    diff_CBCaCa = smodel.Diff('diff_CBCaCa', vsys, CBCaCa)
    diff_CBCaCa.setDcst(DCB)
    diff_PV = smodel.Diff('diff_PV', vsys, PV)
    diff_PV.setDcst(DPV)
    diff_PVCa = smodel.Diff('diff_PVCa', vsys, PVCa)
    diff_PVCa.setDcst(DPV)
    diff_PVMg = smodel.Diff('diff_PVMg', vsys, PVMg)
    diff_PVMg.setDcst(DPV)

    #Pump
    PumpD_f = smodel.SReac('PumpD_f',
                           ssys,
                           ilhs=[Ca],
                           slhs=[Pump],
                           srhs=[CaPump])
    PumpD_f.setKcst(P_f_kcst)

    PumpD_b = smodel.SReac('PumpD_b',
                           ssys,
                           slhs=[CaPump],
                           irhs=[Ca],
                           srhs=[Pump])
    PumpD_b.setKcst(P_b_kcst)

    PumpD_k = smodel.SReac('PumpD_k', ssys, slhs=[CaPump], srhs=[Pump])
    PumpD_k.setKcst(P_k_kcst)

    #iCBsf-fast
    iCBsf1_f = smodel.Reac('iCBsf1_f',
                           vsys,
                           lhs=[Ca, iCBsf],
                           rhs=[iCBsCa],
                           kcst=iCBsf1_f_kcst)
    iCBsf1_b = smodel.Reac('iCBsf1_b',
                           vsys,
                           lhs=[iCBsCa],
                           rhs=[Ca, iCBsf],
                           kcst=iCBsf1_b_kcst)

    #iCBsCa
    iCBsCa_f = smodel.Reac('iCBsCa_f',
                           vsys,
                           lhs=[Ca, iCBsCa],
                           rhs=[iCBCaCa],
                           kcst=iCBsCa_f_kcst)
    iCBsCa_b = smodel.Reac('iCBsCa_b',
                           vsys,
                           lhs=[iCBCaCa],
                           rhs=[Ca, iCBsCa],
                           kcst=iCBsCa_b_kcst)

    #iCBsf_slow
    iCBsf2_f = smodel.Reac('iCBsf2_f',
                           vsys,
                           lhs=[Ca, iCBsf],
                           rhs=[iCBCaf],
                           kcst=iCBsf2_f_kcst)
    iCBsf2_b = smodel.Reac('iCBsf2_b',
                           vsys,
                           lhs=[iCBCaf],
                           rhs=[Ca, iCBsf],
                           kcst=iCBsf2_b_kcst)

    #iCBCaf
    iCBCaf_f = smodel.Reac('iCBCaf_f',
                           vsys,
                           lhs=[Ca, iCBCaf],
                           rhs=[iCBCaCa],
                           kcst=iCBCaf_f_kcst)
    iCBCaf_b = smodel.Reac('iCBCaf_b',
                           vsys,
                           lhs=[iCBCaCa],
                           rhs=[Ca, iCBCaf],
                           kcst=iCBCaf_b_kcst)

    #CBsf-fast
    CBsf1_f = smodel.Reac('CBsf1_f',
                          vsys,
                          lhs=[Ca, CBsf],
                          rhs=[CBsCa],
                          kcst=CBsf1_f_kcst)
    CBsf1_b = smodel.Reac('CBsf1_b',
                          vsys,
                          lhs=[CBsCa],
                          rhs=[Ca, CBsf],
                          kcst=CBsf1_b_kcst)

    #CBsCa
    CBsCa_f = smodel.Reac('CBsCa_f',
                          vsys,
                          lhs=[Ca, CBsCa],
                          rhs=[CBCaCa],
                          kcst=CBsCa_f_kcst)
    CBsCa_b = smodel.Reac('CBsCa_b',
                          vsys,
                          lhs=[CBCaCa],
                          rhs=[Ca, CBsCa],
                          kcst=CBsCa_b_kcst)

    #CBsf_slow
    CBsf2_f = smodel.Reac('CBsf2_f',
                          vsys,
                          lhs=[Ca, CBsf],
                          rhs=[CBCaf],
                          kcst=CBsf2_f_kcst)
    CBsf2_b = smodel.Reac('CBsf2_b',
                          vsys,
                          lhs=[CBCaf],
                          rhs=[Ca, CBsf],
                          kcst=CBsf2_b_kcst)

    #CBCaf
    CBCaf_f = smodel.Reac('CBCaf_f',
                          vsys,
                          lhs=[Ca, CBCaf],
                          rhs=[CBCaCa],
                          kcst=CBCaf_f_kcst)
    CBCaf_b = smodel.Reac('CBCaf_b',
                          vsys,
                          lhs=[CBCaCa],
                          rhs=[Ca, CBCaf],
                          kcst=CBCaf_b_kcst)

    #PVca
    PVca_f = smodel.Reac('PVca_f',
                         vsys,
                         lhs=[Ca, PV],
                         rhs=[PVCa],
                         kcst=PVca_f_kcst)
    PVca_b = smodel.Reac('PVca_b',
                         vsys,
                         lhs=[PVCa],
                         rhs=[Ca, PV],
                         kcst=PVca_b_kcst)

    #PVmg
    PVmg_f = smodel.Reac('PVmg_f',
                         vsys,
                         lhs=[Mg, PV],
                         rhs=[PVMg],
                         kcst=PVmg_f_kcst)
    PVmg_b = smodel.Reac('PVmg_b',
                         vsys,
                         lhs=[PVMg],
                         rhs=[Mg, PV],
                         kcst=PVmg_b_kcst)

    # Ca Influx converted from P Type current
    CaInflux = smodel.Reac('CaInflux', vsys, lhs=[], rhs=[Ca], kcst=0.0)

    return mdl