def main(): direc = "C:/Users/Gunnar/Documents/Ph.D/Data/Static_MF/" name = "SMF_N=20_1/GS_N=20,U=0.0.txt" Psi = get_GS(direc + name) g1 = Psi.g1 g2 = Psi.g2 dt = 0.1 d = Psi.d chi_init = Psi.chi N = Psi.N order = "fourth" model = "HCboson" H = st.Hamiltonian(g1, g2, N, dt, d, chi_init, model, TO=order, grow_chi=False) a = np.array([[0, 0], [1, 0]]) adag = np.array([[0, 1], [0, 0]]) num_op = np.matmul(adag, a) symmetry_check(Psi, H, a, "Ord. param.", plot=True) symmetry_check(Psi, H, num_op, "Density", plot=True)
def run_algo(g1, g2, N, dt, d, chi_max, model, order, T, algo, bis_err, trunc_err_check): H = st.Hamiltonian(g1, g2, N, dt, d, chi_max, model, order, grow_chi=trunc_err_check) Psi = st.StateChain(g1, g2, N, d, chi_max, algo, bis_err) step_num = int(T / dt) H.time_evolve(Psi, step_num, algo, fast_run=True) return Psi, H
def new_mu(coup1, coup2, N, dt, d, chi, T, num_op, old_mu, start_dens, rho_maxerr): goal_dens = 1 / 2 Meas = st.Measure() order = "fourth" model = "HCboson" if start_dens < goal_dens: mu0 = old_mu dens0 = start_dens else: mu1 = old_mu dens1 = start_dens for ind in range(40): mu_ham = st.Hamiltonian(coup1, coup2, N, dt, d, chi, model, TO=order, grow_chi=False) mu_psi = st.StateChain(coup1, coup2, N, d, chi, "tDMRG") steps = int(T / dt) #for ind2 in range(5): mu_psi = mu_ham.time_evolve(mu_psi, steps, "tDMRG", fast_run=True) mu_dens = 0 for m in range(N): mu_dens += Meas.expec(mu_psi, num_op, m) mu_dens /= N dens_err = abs((mu_dens - goal_dens)) / mu_dens if mu_dens > goal_dens: mu1 = coup2[0] dens1 = mu_dens else: mu0 = coup2[0] dens0 = mu_dens if abs(dens_err) < rho_maxerr or ind == 39: mu = coup2[0] if ind == 39: print("Density error:", dens_err) break else: yp = ([mu0, mu1] if mu0 < mu1 else [mu1, mu0]) xp = ([dens0, dens1] if mu0 < mu1 else [dens1, dens0]) coup2[0] = np.interp(goal_dens, xp, yp) return mu
def err_gen(chi, Psi): Psi.chi = chi step_num = 10 H = st.Hamiltonian(Psi.g1, Psi.g2, Psi.N, 0.1, Psi.d, Psi.chi, model="HCboson", TO="fourth") Psi = H.time_evolve(Psi, step_num, "tDMRG", fast_run=True) return Psi.err
def main(): N = int(sys.argv[1]) dt = float(sys.argv[2]) T = int(sys.argv[3]) chi = int(sys.argv[4]) alf = float(sys.argv[5]) step_num = int(T / dt) g1 = [1., 1.] g2 = [1., alf] d = 2 algo = "tDMRG" H = st.Hamiltonian(g1, g2, N, dt, d, chi, model="HCboson", TO="fourth", grow_chi=False) Psi = st.StateChain(g1, g2, N, d, chi, algo) Psi = H.time_evolve(Psi, step_num, algo) M = st.Measure() adag = np.array([[0., 1.], [0, 0]]) a = np.array([[0, 0], [1, 0]]) corr_matrix = M.corr_mat(Psi, adag, a) E_GS = sum(Psi.get_ener(H.Hchain)) data = [E_GS, Psi.err] corr_matrix = np.reshape(corr_matrix, (corr_matrix.shape[0]**2)) data += [corr for corr in corr_matrix] direc_name = "alf=" + str(alf) file_name = "chi=" + str(chi) + ",T=" + str(T) + ",dt=" + str(dt) + ".txt" cwd_store(direc_name, file_name, data) print("Success!")
def refine(): model = "HCboson" N = int(sys.argv[1]) U = float(sys.argv[2]) dt = 0.1 hom = os.path.expanduser("~") dname = hom + "/Data/Static_MF/SMF_N=" + str(N) + "_1/" fname = "GS_N=" + str(N) + ",U=" + str(U) + ".txt" Psi = get_GS(dname + fname) H = st.Hamiltonian(Psi.g1, Psi.g2, N, dt, Psi.d, Psi.chi, model, TO="fourth") Psi = H.time_evolve(Psi, 1000, "tDMRG", fast_run=False) gs_mat = store_GS(Psi) cwd_folder = "refined_gsdata" cwd_store(cwd_folder, fname, gs_mat)
def main(): # model = input("Enter model (Heisen, HCboson): ") model = "HCboson" # Fetches parameters from a file in current directory with name model.txt directory = (os.path.dirname(os.path.realpath(__file__)) + "/" + model + ".txt") f = open(directory, "r") inputlist = [] keylist = {} for line in f: if line.startswith('#'): continue d = [] inputlist.append(line.rstrip('\n').split(" = ")) x = inputlist[-1][0] yl = inputlist[-1][1].split(',') for y in yl: try: d.append(int(y)) except ValueError: try: d.append(float(y)) except ValueError: d.append(y) if len(d) == 1: d = d[0] keylist[x] = d f.close() g1 = keylist['g1'] g2 = keylist['g2'] dt = keylist['dt'] #Time step d = keylist['d'] #One-particle Hilbert space dim chi = keylist['chi'] #Maximum MPS dim N = keylist['N'] #Site number T = keylist['T'] #Total time evolved step_number = int(T / dt) #Number of time steps order = keylist['order'] #Trotter order algo = keylist['algo'] #Which algorithm to use # H belongs to class Hamiltonian which features time evolution and model # construction. H = st.Hamiltonian(g1, g2, N, dt, d, chi, model, TO=order, grow_chi=False) # Build the initial state Psi = st.StateChain(g1, g2, N, d, chi, algo, bis_err=10**-11) # Time evolve the state (imaginary time) start = t.process_time() actstart = t.time() Psi = H.time_evolve(Psi, step_number, algo, fast_run=False) end = t.process_time() actend = t.time() print("Process time taken for algorithm is:", end - start) print("Actual time taken:", actend - actstart) # Output data to terminal algo_output(Psi, H) # Exact diagonalization trotter if N <= 20: start = t.process_time() ED = ed.ExactD(g1, g2, N, d, model, TO=order) end1 = t.process_time() ED.exact_GS() end2 = t.process_time() exact_output(ED) print("\nProcess time taken for full Hamiltonian:", end1 - start) print("\nProcess time taken for ED is:", end2 - end1) if model == "HCboson": Free = st.FreeFerm(g1, g2, N) print("\nFree fermion result:", Free.E_GS) # ener = 0 # M = st.Measure() # for i in range(N): # ener += M.correl() print(Psi.err) return Psi
def SMF_loop(tperp, g1, g2, N, chi, T, rho_maxerr=1e-6, orp_maxerr=1e-6): dt = 0.1 model = "HCboson" order = "fourth" d = 2 algo = "tDMRG" step_num = int(T / dt) M = st.Measure() a = np.array([[0, 0], [1, 0]]) adag = np.array([[0, 1], [0, 0]]) num_op = np.matmul(adag, a) a_exp_guess = np.sqrt(1 / 2) i = 0 err = 1 g2[1] = 4 * tperp * a_exp_guess ord_pars = [a_exp_guess] mu_list = [g2[0]] dens = 1 / 2 # Loops for at most 100 iterations. Some runs do not converge even at this # point. while i < 150 and err > orp_maxerr and ord_pars[-1] > 1e-8: H = st.Hamiltonian(g1, g2, N, dt, d, chi, model, TO=order, grow_chi=False) Psi = st.StateChain(g1, g2, N, d, chi, algo) Psi = H.time_evolve(Psi, step_num, algo, fast_run=True) new_dens = 0 for k in range(N): new_dens += M.expec(Psi, num_op, k) new_dens /= N # Only finds a new chemical potential if density deviates too much from # the goal density. Finds a guess which should lie on the other side # of goal density. if abs(new_dens - dens) / dens > rho_maxerr: if new_dens > dens: over = True else: over = False mu_guess = guess_mu(g2[1], g1[1], tperp, over, new_dens) g2[0] = new_mu(g1, [mu_guess, g2[1]], N, dt, d, chi, T, num_op, g2[0], new_dens, rho_maxerr) mu_list.append(g2[0]) # new_ord_par = M.expec(Psi, a, int(N / 2)) new_ord_par = orp_meas(Psi, a, N) print(abs(new_ord_par)) err = abs((abs(ord_pars[i]) - abs(new_ord_par)) / abs(ord_pars[i])) g2[1] = abs(4 * new_ord_par * tperp) i += 1 ord_pars.append(abs(new_ord_par)) # Some print statements to see if the convergence is coming along if i % 20 == 0: print("Error in order parameter is:", err) print("Truncation error:", Psi.err) print("Error in order parameter is:", err) print("Truncation error:", Psi.err) return ord_pars, Psi, mu_list