Beispiel #1
0
print_section("TOOLS: Measure precision and recall of model")
print("-data: path to dataset | -store: job_gui id to store curve in GUI "\
      "| -store_path: store results locally | -model: stored model to use")

#====== Arguments ===============================================
is_dataset_path, dataset_path = get_command(
    '-data', default='/home/olav/Pictures/Mass_roads_alpha')
store_gui, job_id = get_command('-store_gui', default='-1')
is_store_path, store_path = get_command('-store_path',
                                        default='./pr_data.json')
is_model, model_path = get_command('-model', default='./results/params.pkl')
#==============================================================

store = ParamStorage()
data = store.load_params(path=model_path)
batch_size = data['optimization'].batch_size

measurer = PrecisionRecallCurve(dataset_path, data['params'], data['model'],
                                data['dataset'])
datapoints = measurer.get_curves_datapoints(batch_size)

if store_gui:
    send_precision_recall_data(datapoints, None, job_id=job_id)
else:
    with open(store_path, 'w') as outfile:
        json.dump([{"curve": datapoints, "events": []}], outfile)

plt.suptitle('Precision and recall')
plt.xlabel('Recall')
plt.ylabel('Precision')
Beispiel #2
0
verify, stage = get_command('-verify', default="0")
stage = "stage" + stage

is_tradeoff, tradeoff = get_command('-tradeoff', default="0.5")
tradeoff = float(tradeoff)

#Dataset path. Config used if not supplied
is_alt_dataset, alt_dataset = get_command('-dataset')
if is_alt_dataset:
    dataset_path = alt_dataset
#==============================================================



store = ParamStorage()
teacher = store.load_params(path=teacher_location)
evaluate = util.create_simple_predictor(teacher['model'], teacher['params'])

if not verify:
    creator = Creator(
        pr_path,
        dim=(dataset_params.input_dim, dataset_params.output_dim),
        preproccessing=dataset_params.use_preprocessing,
        std=dataset_params.dataset_std,
        reduce_training=dataset_params.reduce_training,
        reduce_testing=dataset_params.reduce_testing,
        reduce_validation=dataset_params.reduce_validation
    )
    creator.load_dataset()

    data, labels = creator.sample_data(
Beispiel #3
0
    '-teacher', default=filename_params.curriculum_teacher)

verify, stage = get_command('-verify', default="0")
stage = "stage" + stage

is_tradeoff, tradeoff = get_command('-tradeoff', default="0.5")
tradeoff = float(tradeoff)

#Dataset path. Config used if not supplied
is_alt_dataset, alt_dataset = get_command('-dataset')
if is_alt_dataset:
    dataset_path = alt_dataset
#==============================================================

store = ParamStorage()
teacher = store.load_params(path=teacher_location)
evaluate = util.create_simple_predictor(teacher['model'], teacher['params'])

if not verify:
    creator = Creator(pr_path,
                      dim=(dataset_params.input_dim,
                           dataset_params.output_dim),
                      preproccessing=dataset_params.use_preprocessing,
                      std=dataset_params.dataset_std,
                      reduce_training=dataset_params.reduce_training,
                      reduce_testing=dataset_params.reduce_testing,
                      reduce_validation=dataset_params.reduce_validation)
    creator.load_dataset()

    data, labels = creator.sample_data(creator.train,
                                       samples,
Beispiel #4
0
print_section("TOOLS: Measure precision and recall of model")
print(
    "-data: path to dataset | -store: job_gui id to store curve in GUI "
    "| -store_path: store results locally | -model: stored model to use"
)

# ====== Arguments ===============================================
is_dataset_path, dataset_path = get_command("-data", default="/home/olav/Pictures/Mass_roads_alpha")
store_gui, job_id = get_command("-store_gui", default="-1")
is_store_path, store_path = get_command("-store_path", default="./pr_data.json")
is_model, model_path = get_command("-model", default="./results/params.pkl")
# ==============================================================

store = ParamStorage()
data = store.load_params(path=model_path)
batch_size = data["optimization"].batch_size

measurer = PrecisionRecallCurve(dataset_path, data["params"], data["model"], data["dataset"])
datapoints = measurer.get_curves_datapoints(batch_size)

if store_gui:
    send_precision_recall_data(datapoints, None, job_id=job_id)
else:
    with open(store_path, "w") as outfile:
        json.dump([{"curve": datapoints, "events": []}], outfile)


plt.suptitle("Precision and recall")
plt.xlabel("Recall")
plt.ylabel("Precision")