def initFindAndFit(parameters):
    """
    Initialize and return a PSFFFTFinderFitter object.
    """
    # Create psf fft function object.
    psf_fn = psfFn.PSFFn(psf_filename=parameters.getAttr("psf"))

    # Check that the PSF FFT and camera pixel sizes agree.
    diff = abs(
        parameters.getAttr("pixel_size") - psf_fn.getPixelSize() * 1.0e3)
    assert (diff < 1.0e-6), "Wrong pixel size, incorrect PSF data?"

    # Create peak finder.
    finder = fitting.PeakFinderArbitraryPSF(parameters=parameters,
                                            psf_object=psf_fn)

    # Create fftFitC.CFFTFit object.
    mfitter = initFitter(finder, parameters, psf_fn)

    # Create peak fitter.
    fitter = fitting.PeakFitterArbitraryPSF(mfitter=mfitter,
                                            parameters=parameters)

    # Specify which properties we want from the analysis.
    properties = [
        "background", "error", "height", "iterations", "significance", "sum",
        "x", "y", "z"
    ]

    return fitting.PeakFinderFitter(peak_finder=finder,
                                    peak_fitter=fitter,
                                    properties=properties)
Beispiel #2
0
def initFindAndFit(parameters):
    """
    Initialize and return a SplinerFinderFitter object.
    """
    # Create spline object.
    spline_fn = splineToPSF.loadSpline(parameters.getAttr("spline"))

    # Create peak finder.
    finder = fitting.PeakFinderArbitraryPSF(parameters=parameters,
                                            psf_object=spline_fn)

    # Create cubicFitC.CSplineFit object.
    mfitter = initFitter(finder, parameters, spline_fn)

    # Create peak fitter.
    fitter = fitting.PeakFitterArbitraryPSF(mfitter=mfitter,
                                            parameters=parameters)

    # Specify which properties we want from the analysis.
    properties = [
        "background", "error", "height", "iterations", "significance", "sum",
        "x", "y", "z"
    ]

    return fitting.PeakFinderFitter(peak_finder=finder,
                                    peak_fitter=fitter,
                                    properties=properties)
def initFindAndFit(parameters):
    """
    Initialize and return a fitting.PeakFinderFitter object.
    """
    # Create pupil function object.
    [min_z, max_z] = parameters.getZRange()
    pupil_fn = pupilFn.PupilFunction(pf_filename = parameters.getAttr("pupil_function"),
                                     zmin = min_z * 1.0e+3,
                                     zmax = max_z * 1.0e+3)

    # PSF debugging.
    if False:
        tifffile.imsave("pupil_fn_psf.tif", pupil_fn.getPSF(0.1).astype(numpy.float32))

    # Check that the PF and camera pixel sizes agree.
    diff = abs(parameters.getAttr("pixel_size") - pupil_fn.getPixelSize()*1.0e3)
    assert (diff < 1.0e-6), "Incorrect pupil function?"
    
    # Create peak finder.
    finder = fitting.PeakFinderArbitraryPSF(parameters = parameters,
                                            psf_object = pupil_fn)

    # Create cubicFitC.CSplineFit object.
    mfitter = initFitter(finder, parameters, pupil_fn)
    
    # Create peak fitter.
    fitter = fitting.PeakFitterArbitraryPSF(mfitter = mfitter,
                                            parameters = parameters)
    
    # Specify which properties we want from the analysis.
    properties = ["background", "error", "height", "iterations", "significance", "sum", "x", "y", "z"]

    return fitting.PeakFinderFitter(peak_finder = finder,
                                    peak_fitter = fitter,
                                    properties = properties)