def ptch_pose_exp2(isRun=False,
                   deviceId=[1],
                   numPoseStream=256,
                   numPatchStream=256):
    prms = sp.get_prms(geoFence='dc-v1',
                       labels=['pose', 'ptch'],
                       labelType=['quat', 'wngtv'],
                       lossType=['l2', 'classify'],
                       labelFrac=[0.5, 0.5],
                       rawImSz=256,
                       crpSz=192,
                       splitDist=100)
    nPrms = se.get_nw_prms(imSz=101,
                           netName='smallnet-v2',
                           concatLayer='pool4',
                           lossWeight=10.0,
                           multiLossProto='v1',
                           ptchStreamNum=numPatchStream,
                           poseStreamNum=numPoseStream)
    lPrms = se.get_lr_prms(batchsize=256, stepsize=10000, clip_gradients=10.0)
    cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=deviceId)
    if isRun:
        exp = se.make_experiment(prms, cPrms)
        exp.run()
    else:
        return prms, cPrms
Beispiel #2
0
def smallnetv2_pool4_pose_euler_mx45_crp192_rawImSz256(isRun=False,
                                                       numTrain=1e+7,
                                                       deviceId=[0],
                                                       isPythonLayer=False,
                                                       isGray=False,
                                                       extraFc=None,
                                                       resumeIter=0):
    prms = sp.get_prms(geoFence='dc-v2',
                       labels=['pose'],
                       labelType=['euler'],
                       lossType=['l2'],
                       maxEulerRot=45,
                       rawImSz=256,
                       splitDist=100,
                       numTrain=numTrain,
                       crpSz=192)
    nPrms = se.get_nw_prms(imSz=101,
                           netName='smallnet-v2',
                           concatLayer='pool4',
                           lossWeight=10.0,
                           randCrop=False,
                           concatDrop=False,
                           isGray=isGray,
                           isPythonLayer=isPythonLayer,
                           extraFc=extraFc)
    lPrms = se.get_lr_prms(batchsize=256, stepsize=10000, clip_gradients=10.0)
    cPrms = se.get_caffe_prms(nPrms,
                              lPrms,
                              deviceId=deviceId,
                              resumeIter=resumeIter)
    if isRun:
        exp = se.make_experiment(prms, cPrms)
        exp.run()
    return prms, cPrms
Beispiel #3
0
def smallnetv2_pool4_pose_crp192_rawImSz256(isRun=False,
                                            isGray=False,
                                            numTrain=1e+7,
                                            deviceId=[0],
                                            isPythonLayer=False,
                                            runNum=0):
    prms = sp.get_prms_pose(geoFence='dc-v2',
                            crpSz=192,
                            rawImSz=256,
                            splitDist=100,
                            numTrain=numTrain)
    nPrms = se.get_nw_prms(imSz=101,
                           netName='smallnet-v2',
                           concatLayer='pool4',
                           lossWeight=10.0,
                           randCrop=False,
                           concatDrop=False,
                           isGray=isGray,
                           isPythonLayer=isPythonLayer)
    lPrms = se.get_lr_prms(batchsize=256, stepsize=10000, clip_gradients=1.0)
    cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=deviceId, runNum=runNum)
    if isRun:
        exp = se.make_experiment(prms, cPrms)
        exp.run()
    else:
        return prms, cPrms
Beispiel #4
0
def smallnetv5_pose_crp192_fc5_rawImSz256(isRun=False,
                                          isGray=False,
                                          numTrain=1e+7,
                                          deviceId=[0],
                                          isPythonLayer=True,
                                          runNum=0,
                                          extraFc=None,
                                          numFc5=None,
                                          lrAbove=None):
    prms = sp.get_prms_pose(geoFence='dc-v2',
                            crpSz=192,
                            rawImSz=256,
                            splitDist=100,
                            numTrain=numTrain)
    nPrms = se.get_nw_prms(imSz=101,
                           netName='smallnet-v5',
                           concatLayer='fc5',
                           lossWeight=10.0,
                           randCrop=False,
                           concatDrop=False,
                           isGray=isGray,
                           isPythonLayer=isPythonLayer,
                           numFc5=numFc5,
                           extraFc=extraFc,
                           lrAbove=lrAbove)
    lPrms = se.get_lr_prms(batchsize=256, stepsize=10000, clip_gradients=1.0)
    cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=deviceId, runNum=runNum)
    if isRun:
        exp = se.make_experiment(prms, cPrms)
        exp.run()
    return prms, cPrms
Beispiel #5
0
def ptch_pose_euler_mx90_smallnet_v7_fc5_exp2(isRun=False, deviceId=[1],
						 numTrain=1e+7, batchsize=256, extraFc=None, isPythonLayer=True,
					   numFc5=None, numCommonFc=None, numPoseStream=256,
						 numPatchStream=256):

	#Experiment prms
	prms  = sp.get_prms(geoFence='dc-v2', labels=['pose', 'ptch'], 
											labelType=['euler', 'wngtv'],
											lossType=['l2', 'classify'], labelFrac=[0.5,0.5],
											rawImSz=256, crpSz=192, splitDist=100,
											numTrain=numTrain, maxEulerRot=90,
											nBins=[None, None], binTypes=[None, None])

	#Network architectures
	nPrms = se.get_nw_prms(imSz=101, netName='smallnet-v7',
					 concatLayer='fc5', lossWeight=10.0,
							 multiLossProto='v1', extraFc=extraFc,
							 isPythonLayer=isPythonLayer, numFc5=numFc5,
							 numCommonFc=numCommonFc, poseStreamNum=numPoseStream,
							 ptchStreamNum=numPatchStream)
	
	#Learning rate info
	lPrms = se.get_lr_prms(batchsize=batchsize, stepsize=20000,
								 clip_gradients=10.0, debug_info=True)
	cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=deviceId)
	if isRun:
		exp   = se.make_experiment(prms, cPrms)
		exp.run()
	return prms, cPrms	
Beispiel #6
0
def smallnetv5_fc5_pose_euler_crp192_rawImSz256_lossl1(isRun=False,
                                                       numTrain=1e+7,
                                                       deviceId=[0],
                                                       isPythonLayer=True,
                                                       isGray=False,
                                                       extraFc=None,
                                                       lrAbove=None,
                                                       numFc5=None):
    prms = sp.get_prms(geoFence='dc-v2',
                       labels=['pose'],
                       labelType=['euler'],
                       lossType=['l1'],
                       maxEulerRot=None,
                       rawImSz=256,
                       splitDist=100,
                       numTrain=numTrain,
                       crpSz=192)
    nPrms = se.get_nw_prms(imSz=101,
                           netName='smallnet-v5',
                           concatLayer='fc5',
                           lossWeight=10.0,
                           randCrop=False,
                           concatDrop=False,
                           isGray=isGray,
                           isPythonLayer=isPythonLayer,
                           extraFc=extraFc,
                           numFc5=numFc5,
                           lrAbove=lrAbove)
    lPrms = se.get_lr_prms(batchsize=256, stepsize=10000, clip_gradients=10.0)
    cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=deviceId)
    if isRun:
        exp = se.make_experiment(prms, cPrms)
        exp.run()
    return prms, cPrms
Beispiel #7
0
def smallnetv2_pool4_pose_randcrp(isRun=False):
	prms  = sp.get_prms_pose(geoFence='dc-v1')
	nPrms = se.get_nw_prms(imSz=101, netName='smallnet-v2',
							 concatLayer='pool4', randCrop=True)
	lPrms = se.get_lr_prms(batchsize=256, stepsize=5000)
	cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=[0,1,2,3])
	if isRun:
		exp   = se.make_experiment(prms, cPrms)
		exp.run()
	else:
		return prms, cPrms	
Beispiel #8
0
def smallnetv3_pool4_pose_crp192(isRun=False):
	prms  = sp.get_prms_pose(geoFence='dc-v1', crpSz=192)
	nPrms = se.get_nw_prms(imSz=101, netName='smallnet-v3',
							 concatLayer='pool4', lossWeight=10.0)
	lPrms = se.get_lr_prms(batchsize=256, stepsize=10000, clip_gradients=10.0)
	cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=[0])
	if isRun:
		exp   = se.make_experiment(prms, cPrms)
		exp.run()
	else:
		return prms, cPrms	
Beispiel #9
0
def smallnet_pool4_pose(isRun=False):
	prms  = sp.get_prms_pose(geoFence='dc-v1')
	nPrms = se.get_nw_prms(imSz=101, netName='smallnet',
							 concatLayer='pool4')
	lPrms = se.get_lr_prms(batchsize=256)
	cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=[0,1])
	if isRun:
		exp   = se.make_experiment(prms, cPrms)
		exp.run()
	else:
		return prms, cPrms	
Beispiel #10
0
def smallnetv3_pool4_pose_euler_mx45_crp192(isRun=False):
	prms  = sp.get_prms(geoFence='dc-v1', labels=['pose'], labelType=['euler'],
											lossType=['l2'], maxEulerRot=45, crpSz=192)
	nPrms = se.get_nw_prms(imSz=101, netName='smallnet-v3',
							 concatLayer='pool4', lossWeight=10.0)
	lPrms = se.get_lr_prms(batchsize=256, clip_gradients=1.0)
	cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=[1])
	if isRun:
		exp   = se.make_experiment(prms, cPrms)
		exp.run()
	else:
		return prms, cPrms	
Beispiel #11
0
def smallnetv2_pool4_ptch_pose_crp192_rawImSz256(isRun=False):
	prms  = sp.get_prms(geoFence='dc-v1', labels=['pose', 'ptch'], 
											labelType=['quat', 'wngtv'],
											lossType=['l2', 'classify'], labelFrac=[0.5,0.5],
											rawImSz=256, crpSz=192)
	nPrms = se.get_nw_prms(imSz=101, netName='smallnet-v2',
							 concatLayer='pool4', lossWeight=10.0)
	lPrms = se.get_lr_prms(batchsize=256, stepsize=10000, clip_gradients=10.0)
	cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=[1])
	if isRun:
		exp   = se.make_experiment(prms, cPrms)
		exp.run()
	else:
		return prms, cPrms	
Beispiel #12
0
def smallnetv2_pool4_nrml_crp192_rawImSz256_newsplits(isRun=False):
	prms  = sp.get_prms(geoFence='dc-v1', labels=['nrml'], 
											labelType=['xyz'],
											lossType=['l2'],
											rawImSz=256, crpSz=192)
	nPrms = se.get_nw_prms(imSz=101, netName='smallnet-v2',
							 concatLayer='pool4', lossWeight=10.0, maxJitter=0)
	lPrms = se.get_lr_prms(batchsize=256, stepsize=10000, clip_gradients=10.0)
	cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=[1])
	if isRun:
		exp   = se.make_experiment(prms, cPrms)
		exp.run()
	else:
		return prms, cPrms	
Beispiel #13
0
def smallnetv2_pool4_pose_crp192_rawImSz256_newsplits(isRun=False, isGray=False):
	prms  = sp.get_prms_pose(geoFence='dc-v1', crpSz=192,
													 rawImSz=256, splitDist=100)
	nPrms = se.get_nw_prms(imSz=101, netName='smallnet-v2',
							 concatLayer='pool4', lossWeight=10.0,
								randCrop=False, concatDrop=False,
								isGray=isGray)
	lPrms = se.get_lr_prms(batchsize=256, stepsize=10000, clip_gradients=10.0)
	cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=[1])
	if isRun:
		exp   = se.make_experiment(prms, cPrms)
		exp.run()
	else:
		return prms, cPrms	
Beispiel #14
0
def smallnetv2_pool4_ptch_crp192_rawImSz256(isRun=False, isGray=False, numTrain=1e+7,
					isPythonLayer=False, deviceId=[2], batchsize=256,
					resumeIter=0, extraFc=None, lrAbove=None):
	prms  = sp.get_prms_ptch(geoFence='dc-v2', crpSz=192,
													 rawImSz=256, splitDist=100,
													 numTrain=numTrain)
	nPrms = se.get_nw_prms(imSz=101, netName='smallnet-v2',
							 concatLayer='pool4', lossWeight=10.0,
								randCrop=False, concatDrop=False,
								isGray=isGray, isPythonLayer=isPythonLayer,
								extraFc=extraFc, lrAbove=lrAbove)
	lPrms = se.get_lr_prms(batchsize=batchsize, stepsize=10000, clip_gradients=10.0)
	cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=deviceId,
								resumeIter=resumeIter)
	if isRun:
		exp   = se.make_experiment(prms, cPrms)
		exp.run()
	return prms, cPrms	
Beispiel #15
0
def smallnetv2_pool4_nrml_crp192_rawImSz256_nojitter(isRun=False, isGray=False,
																			 numTrain=1e+7, deviceId=[0],
																			 makeNrmlUni=0.002, isPythonLayer=True):
	prms  = sp.get_prms_nrml(geoFence='dc-v2', crpSz=192,
													 rawImSz=256, splitDist=100,
													 numTrain=numTrain, nrmlMakeUni=makeNrmlUni)
	nPrms = se.get_nw_prms(imSz=101, netName='smallnet-v2',
							 concatLayer='pool4', lossWeight=10.0,
								randCrop=False, concatDrop=False,
								isGray=isGray, maxJitter=0, isPythonLayer=isPythonLayer)
	lPrms = se.get_lr_prms(batchsize=256, stepsize=10000,
												 clip_gradients=10.0, debug_info=True)
	cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=deviceId)
	if isRun:
		exp   = se.make_experiment(prms, cPrms)
		exp.run()
	else:
		return prms, cPrms	
Beispiel #16
0
def ptch_pose_euler_mx90_alexnet_exp1(isRun=False, deviceId=[1], numTrain=1e+7, batchsize=256,
								 extraFc=None, isPythonLayer=True):
	prms  = sp.get_prms(geoFence='dc-v2', labels=['pose', 'ptch'], 
											labelType=['euler', 'wngtv'],
											lossType=['l2', 'classify'], labelFrac=[0.5,0.5],
											rawImSz=256, crpSz=192, splitDist=100,
											numTrain=numTrain, maxEulerRot=90,
											nBins=[None, None], binTypes=[None, None])
	nPrms = se.get_nw_prms(imSz=101, netName='alexnet',
							 concatLayer='conv5', lossWeight=10.0,
							 multiLossProto=None, extraFc=extraFc,
							 isPythonLayer=isPythonLayer)
	lPrms = se.get_lr_prms(batchsize=batchsize, stepsize=20000, clip_gradients=10.0)
	cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=deviceId)
	if isRun:
		exp   = se.make_experiment(prms, cPrms)
		exp.run()
	else:
		return prms, cPrms	
Beispiel #17
0
def smallnetv5_fc5_ptch_crp192_rawImSz256(isRun=False, isGray=False, numTrain=1e+7,
					isPythonLayer=True, deviceId=[2], batchsize=256,
					resumeIter=0, extraFc=None, numFc5=512, runNum=0,
					lrAbove=None, geoFence='dc-v2', numTest=1e+4):
	prms  = sp.get_prms_ptch(geoFence=geoFence, crpSz=192,
													 rawImSz=256, splitDist=100,
													 numTrain=numTrain, numTest=numTest)
	nPrms = se.get_nw_prms(imSz=101, netName='smallnet-v5',
							 concatLayer='fc5', lossWeight=10.0,
								randCrop=False, concatDrop=False,
								isGray=isGray, isPythonLayer=isPythonLayer,
								extraFc=extraFc, numFc5=numFc5, lrAbove=lrAbove)
	lPrms = se.get_lr_prms(batchsize=batchsize, stepsize=10000, 
											clip_gradients=10.0, debug_info=True)
	cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=deviceId,
								resumeIter=resumeIter, runNum=runNum)
	if isRun:
		exp   = se.make_experiment(prms, cPrms)
		exp.run()
	return prms, cPrms	
Beispiel #18
0
def smallnetv5_pool4_pose_classify_euler_crp192_rawImSz256(
        isRun=False,
        numTrain=1e+7,
        deviceId=[0],
        isPythonLayer=True,
        isGray=False,
        numFc5=512):
    prms = sp.get_prms(geoFence='dc-v2',
                       labels=['pose'],
                       labelType=['euler'],
                       lossType=['classify'],
                       nBins=[20],
                       binTypes=['uniform'],
                       maxEulerRot=None,
                       rawImSz=256,
                       splitDist=100,
                       numTrain=numTrain,
                       crpSz=192)
    nPrms = se.get_nw_prms(imSz=101,
                           netName='smallnet-v5',
                           concatLayer='fc5',
                           lossWeight=10.0,
                           randCrop=False,
                           concatDrop=False,
                           isGray=isGray,
                           isPythonLayer=isPythonLayer,
                           numFc5=numFc5)
    lPrms = se.get_lr_prms(batchsize=256,
                           stepsize=10000,
                           clip_gradients=10.0,
                           debug_info=True)
    cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=deviceId)
    if isRun:
        exp = se.make_experiment(prms, cPrms)
        exp.run()
    return prms, cPrms