Beispiel #1
0
def main():
    """
  Creates and solves the 2D motion planning problem.
  """

    obstacles = [create_box((.5, .5), .2, .2)]
    goal = create_box((.9, .9), .2, .2)

    constraint_problem = create_problem(goal, obstacles)
    print
    print constraint_problem

    stream_problem = constraint_to_stripstream(constraint_problem)
    print
    print stream_problem

    search = get_fast_downward('astar')  # dijkstra | astar
    plan, _ = incremental_planner(stream_problem,
                                  search=search,
                                  frequency=25,
                                  waves=False)
    plan = convert_plan(plan)
    print 'Plan:', plan

    draw_solution(plan, goal, obstacles)
    raw_input('Finish?')
def solve_tamp(env):
    viewer = env.GetViewer() is not None
    problem = PROBLEM(env)

    robot, manipulator, base_manip, _ = initialize_openrave(env,
                                                            ARM,
                                                            min_delta=.01)
    bodies = {obj: env.GetKinBody(obj) for obj in problem.object_names}

    open_gripper(manipulator)
    initial_conf = Conf(
        robot.GetConfigurationValues()[manipulator.GetArmIndices()])

    ####################

    fts_problem = get_problem(env, problem, robot, manipulator, base_manip,
                              bodies, initial_conf)
    print
    print fts_problem

    stream_problem = constraint_to_stripstream(fts_problem)
    print
    print stream_problem

    for stream in stream_problem.cond_streams:
        print stream, stream.max_level

    # TODO - why is this slower/less reliable than the other one (extra axioms, eager evaluation?)
    if viewer: raw_input('Start?')
    search_fn = get_fast_downward('eager', max_time=10, verbose=False)
    #solve = lambda: incremental_planner(stream_problem, search=search_fn, frequency=1, waves=True, debug=False)
    solve = lambda: simple_focused(stream_problem,
                                   search=search_fn,
                                   max_level=INF,
                                   shared=False,
                                   debug=False,
                                   verbose=False)
    env.Lock()
    plan, universe = solve()
    env.Unlock()

    print SEPARATOR

    plan = convert_plan(plan)
    if plan is not None:
        print 'Success'
        for i, (action, args) in enumerate(plan):
            print i + 1, action, args
    else:
        print 'Failure'

    ####################

    if viewer and plan is not None:
        print SEPARATOR
        visualize_solution(env, problem, initial_conf, robot, manipulator,
                           bodies, plan)
    raw_input('Finish?')
Beispiel #3
0
def main():
    """
    Creates and solves the 1D task and motion planning FTSProblem problem.
    """

    constraint_problem = create_problem()
    print
    print constraint_problem

    stream_problem = constraint_to_stripstream(constraint_problem)
    print
    print stream_problem

    # 'dijkstra | astar | wastar1 | wastar2 | wastar3 | eager | lazy
    search_fn = get_fast_downward('eager')

    plan, _ = incremental_planner(stream_problem, search=search_fn)
    print
    print 'Plan:', convert_plan(plan)