Beispiel #1
0
    def __init__(self):
        self.formulas = smf.get_formulas()
        self.formula = random.choice(self.formulas)
        self.elements = se.get_elements()
        self.e1 = self.formula[0]
        self.s1 = self.formula[1]
        self.e2 = self.formula[2]
        self.s2 = self.formula[3]
        self.aw1 = self.elements[self.e1][2]
        self.aw2 = self.elements[self.e2][2]
        self.w1 = self.s1 * self.aw1
        self.w2 = self.s2 * self.aw2
        self.wt = self.w1 + self.w2
        self.p1 = self.w1 / self.wt * 100
        self.p2 = self.w2 / self.wt * 100
        self.pt = self.p1 + self.p2
        self.n1 = self.p1 / self.aw1
        self.n2 = self.p2 / self.aw2
        self.a1 = self.n1 / min(self.n1, self.n2)
        self.a2 = self.n2 / min(self.n1, self.n2)
        self.f = self.s1 / self.a1
        self.c1 = round(self.a1 * self.f)
        self.c2 = round(self.a2 * self.f)

        self.question = [
            '''<div id="question"> 
        Given the percent composition of <br>
        {0:.2f} % {1} <br>
        {2:.2f} % {3} <br>
        and a total weight of {4:.3f} amu, <br>
        find the molecular formula.
        Explain your solution completely.
        </div>'''.format(self.p1, self.e1, self.p2, self.e2, self.wt)
        ]

        self.answer = [
            ur'''<div id="answer">
    $$
    atoms \: %s = %.2f \:amu\: %s \cdot \frac{1 \:atom\: %s} {%.3f \: amu} = %.3f \: atoms \: %s
    $$
    $$
    atoms \: %s = %.2f \:amu\: %s \cdot \frac{1 \:atom\: %s} {%.3f \: amu} = %.3f \: atoms \: %s
    $$
    $$
    smallest = %.3f 
    $$
    $$
    factor = %d
    $$
    $$
    formula = %s_{%d}%s_{%d}
    $$
    $$
    formula \: weight = %.3f \: amu 
    $$
    </div>''' % (self.e1, self.p1, self.e1, self.e1, self.aw1, self.n1,
                 self.e1, self.e2, self.p2, self.e2, self.e2, self.aw2,
                 self.n2, self.e2, min(self.n1, self.n2), self.f, self.e1,
                 self.c1, self.e2, self.c2, self.wt)
        ]
Beispiel #2
0
    def __init__(self):
        self.elements = se.get_elements()
        self.m = random.randint(100, 800) / 100.
        self.s = random.choice(self.elements.keys())
        self.name = self.elements[self.s][0]
        self.mm = self.elements[self.s][2]
        self.mol = self.m / self.mm
        self.a = self.mol * 6.02e23

        self.question = [
            '''<div id="question"> 
        Convert %.2e atoms of %s to grams of %s and moles of %s.
        Use the unit conversion method and show cancellation of units.
        </div>''' % (self.a, self.name, self.name, self.name)
        ]

        self.answer = [
            ur'''<div id="answer">
        $$
        \require{cancel}
        %.2e \cancel{atoms \: %s} \cdot \frac{ %.2f {g \: %s} }{ 6.02e23 \: \cancel{atoms \: %s} } = %.2f \: g \: %s
        $$
        $$
        \require{cancel}
        %.2e \cancel{atoms \: %s} \cdot \frac{ 1 \: mol \: %s }{ 6.02e23 \cancel{atoms \: %s} } = %.2e \: mol \: %s 
        $$
        </div>''' %
            (self.a, self.s, self.mm, self.s, self.s, sf(self.m), self.s,
             self.a, self.s, self.s, self.s, sf(self.mol), self.s)
        ]
Beispiel #3
0
    def __init__(self):
        self.formulas = smf.get_formulas()
        self.formula = random.choice(self.formulas)
        self.elements = se.get_elements()
        self.e1 = self.formula[0]
        self.s1 = self.formula[1]
        self.e2 = self.formula[2]
        self.s2 = self.formula[3]
        self.aw1 = self.elements[self.e1][2]
        self.aw2 = self.elements[self.e2][2]
        self.w1 = self.s1 * self.aw1
        self.w2 = self.s2 * self.aw2
        self.wt = self.w1 + self.w2
        self.p1 = self.w1 / self.wt * 100
        self.p2 = self.w2 / self.wt * 100
        self.pt = self.p1 + self.p2

        self.question = [
            '''<div id="question"> 
        Find the percent composition of {0}'''.format(self.e1)
        ]
        if self.s1 > 1:
            self.question[0] += '<sub>{0}</sub>'.format(self.s1)
        self.question[0] += '{0}'.format(self.e2)
        if self.s2 > 1:
            self.question[0] += '<sub>{0}</sub>'.format(self.s2)
        self.question[0] += '''<br>Explain your solution completely.
        </div>'''

        self.answer = [
            ur'''<div id="answer">
    $$
    wt_{%s} = %d \:atom\: %s \cdot \frac{%.3f \: amu} {1 \:atom\: %s} = %.3f \: amu \: %s
    $$
    $$
    wt_{%s} = %d \:atom\: %s \cdot \frac{%.3f \: amu} {1 \:atom\: %s} = %.3f \: amu \: %s
    $$
    $$
    wt_{tot} = %.3f \: amu 
    $$
    $$
    \%% \: %s = \frac{wt_{%s}} {wt_{tot}} \cdot 100 = \frac{%.3f \: amu} {%.3f \: amu} \cdot 100 = %.2f \: \%% \: %s
    $$
    $$
    \%% \: %s = \frac{wt_{%s}} {wt_{tot}} \cdot 100 = \frac{%.3f \: amu} {%.3f \: amu} \cdot 100 = %.2f \: \%% \: %s
    $$
    $$
    \%%_{tot} = %.2f \: \%% 
    $$
    </div>''' %
            (self.e1, self.s1, self.e1, self.aw1, self.e1, self.w1, self.e1,
             self.e2, self.s2, self.e2, self.aw2, self.e2, self.w2, self.e2,
             self.wt, self.e1, self.e1, self.w1, self.wt, self.p1, self.e1,
             self.e2, self.e2, self.w2, self.wt, self.p2, self.e2, self.pt)
        ]
Beispiel #4
0
class elements_with_rev_at_wt(): 
    '''Find pairs of elements on periodic table with reversed atomic weights.'''
    area = ["periodic table"]
    skill = ["atomic weight"]
    
    pairs=[]
    elements = se.get_elements()
    for e1 in elements:
        for e2 in elements:
            if elements[e1][1] < elements[e2][1] and elements[e1][2] > elements[e2][2]:
                pairs.append([e1,e2])

    question = '''<div id="question"> 
    Find all pairs of elements where the average atomic weight 
    of the element with the smaller atomic number is more than the
    average atomic weight of the element with the larger atomic number.
    </div>'''
    
    answer = '<div id="answer"> '
    for i in pairs:
        answer += str(i)
    answer += '</div> '