def test_cac(I): L = 5 excl_factor = 1 custom_iac = _iac(I.shape[0]) ref = naive_cac(I, L, excl_factor, custom_iac) bidirectional = True comp = _cac(I, L, bidirectional, excl_factor) npt.assert_almost_equal(ref, comp)
def test_cac(I): L = 5 excl_factor = 1 custom_iac = _iac(I.shape[0]) left = naive_cac(I, L, excl_factor, custom_iac) bidirectional = True right = _cac(I, L, bidirectional, excl_factor) npt.assert_almost_equal(left, right)
def test_floss(): data = np.random.uniform(-1000, 1000, [64]) m = 5 old_data = data[:30] n = old_data.shape[0] add_data = data[30:] mp = naive_right_mp(old_data, m) comp_mp = stump(old_data, m) k = mp.shape[0] rolling_Ts = core.rolling_window(data[1:], n) L = 5 excl_factor = 1 custom_iac = _iac(k, bidirectional=False) stream = floss(comp_mp, old_data, m, L, excl_factor, custom_iac=custom_iac) last_idx = n - m + 1 excl_zone = int(np.ceil(m / 4)) zone_start = max(0, k - excl_zone) for i, ref_T in enumerate(rolling_Ts): mp[:, 1] = -1 mp[:, 2] = -1 mp[:] = np.roll(mp, -1, axis=0) mp[-1, 0] = np.inf mp[-1, 3] = last_idx + i D = naive_distance_profile(ref_T[-m:], ref_T, m) D[zone_start:] = np.inf update_idx = np.argwhere(D < mp[:, 0]).flatten() mp[update_idx, 0] = D[update_idx] mp[update_idx, 3] = last_idx + i ref_cac_1d = _cac( mp[:, 3] - i - 1, L, bidirectional=False, excl_factor=excl_factor, custom_iac=custom_iac, ) ref_mp = mp.copy() ref_P = ref_mp[:, 0] ref_I = ref_mp[:, 3] stream.update(ref_T[-1]) comp_cac_1d = stream.cac_1d_ comp_P = stream.P_ comp_I = stream.I_ comp_T = stream.T_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_cac_1d, comp_cac_1d) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_T, comp_T)
def test_floss(): data = np.random.uniform(-1000, 1000, [64]) m = 5 old_data = data[:30] n = old_data.shape[0] add_data = data[30:] left_mp = naive_right_mp(old_data, m) right_mp = stump(old_data, m) k = left_mp.shape[0] rolling_Ts = core.rolling_window(data[1:], n) L = 5 excl_factor = 1 custom_iac = _iac(k, bidirectional=False) right_gen = floss( right_mp, old_data, add_data, m, L, excl_factor, custom_iac=custom_iac ) last_idx = n - m + 1 excl_zone = int(np.ceil(m / 4)) zone_start = max(0, k - excl_zone) for i, T in enumerate(rolling_Ts): left_mp[:] = np.roll(left_mp, -1, axis=0) left_mp[-1, 0] = np.inf left_mp[-1, 3] = last_idx + i D = naive_distance_profile(T[-m:], T, m) D[zone_start:] = np.inf update_idx = np.argwhere(D < left_mp[:, 0]).flatten() left_mp[update_idx, 0] = D[update_idx] left_mp[update_idx, 3] = last_idx + i left_cac = _cac( left_mp[:, 3] - i - 1, L, bidirectional=False, excl_factor=excl_factor, custom_iac=custom_iac, ) right_cac, right_mp, tmp_T = next(right_gen) npt.assert_almost_equal(left_cac, right_cac)