Beispiel #1
0
def read_subset(subset_dir, shuffle=False, sample_size=None):
    class_names = (
        'apple_pie', 'baby_back_ribs', 'baklava', 'beef_carpaccio',
        'beef_tartare', 'beet_salad', 'beignets', 'bibimbap', 'bread_pudding',
        'breakfast_burrito', 'bruschetta', 'caesar_salad', 'cannoli',
        'caprese_salad', 'carrot_cake', 'ceviche', 'cheesecake',
        'cheese_plate', 'chicken_curry', 'chicken_quesadilla', 'chicken_wings',
        'chocolate_cake', 'chocolate_mousse', 'churros', 'clam_chowder',
        'club_sandwich', 'crab_cakes', 'creme_brulee', 'croque_madame',
        'cup_cakes', 'deviled_eggs', 'donuts', 'dumplings', 'edamame',
        'eggs_benedict', 'escargots', 'falafel', 'filet_mignon',
        'fish_and_chips', 'foie_gras', 'french_fries', 'french_onion_soup',
        'french_toast', 'fried_calamari', 'fried_rice', 'frozen_yogurt',
        'garlic_bread', 'gnocchi', 'greek_salad', 'grilled_cheese_sandwich',
        'grilled_salmon', 'guacamole', 'gyoza', 'hamburger',
        'hot_and_sour_soup', 'hot_dog', 'huevos_rancheros', 'hummus',
        'ice_cream', 'lasagna', 'lobster_bisque', 'lobster_roll_sandwich',
        'macaroni_and_cheese', 'macarons', 'miso_soup', 'mussels', 'nachos',
        'omelette', 'onion_rings', 'oysters', 'pad_thai', 'paella', 'pancakes',
        'panna_cotta', 'peking_duck', 'pho', 'pizza', 'pork_chop', 'poutine',
        'prime_rib', 'pulled_pork_sandwich', 'ramen', 'ravioli',
        'red_velvet_cake', 'risotto', 'samosa', 'sashimi', 'scallops',
        'seaweed_salad', 'shrimp_and_grits', 'spaghetti_bolognese',
        'spaghetti_carbonara', 'spring_rolls', 'steak', 'strawberry_shortcake',
        'sushi', 'tacos', 'takoyaki', 'tiramisu', 'tuna_tartare', 'waffles')

    image_dirs, label_dirs = sf.read_subset_cls(subset_dir,
                                                shuffle=shuffle,
                                                sample_size=sample_size)

    return image_dirs, label_dirs, class_names
Beispiel #2
0
def read_subset(subset_dir, shuffle=False, sample_size=None):
    class_names = (
        'beaver', 'dolphin', 'otter', 'seal', 'whale',
        'aquarium_fish', 'flatfish', 'ray', 'shark', 'trout',
        'orchid', 'poppy', 'rose', 'sunflower', 'tulip',
        'bottle', 'bowl', 'can', 'cup', 'plate',
        'apple', 'mushroom', 'orange', 'pear', 'sweet_pepper',
        'clock', 'keyboard', 'lamp', 'telephone', 'television',
        'bed', 'chair', 'couch', 'table', 'wardrobe',
        'bee', 'beetle', 'butterfly', 'caterpillar', 'cockroach',
        'bear', 'leopard', 'lion', 'tiger', 'wolf',
        'bridge', 'castle', 'house', 'road', 'skyscraper',
        'cloud', 'forest', 'mountain', 'plain', 'sea',
        'camel', 'cattle', 'chimpanzee', 'elephant', 'kangaroo',
        'fox', 'porcupine', 'possum', 'raccoon', 'skunk',
        'crab', 'lobster', 'snail', 'spider', 'worm',
        'baby', 'boy', 'girl', 'man', 'woman',
        'crocodile', 'dinosaur', 'lizard', 'snake', 'turtle',
        'hamster', 'mouse', 'rabbit', 'shrew', 'squirrel',
        'maple_tree', 'oak_tree', 'palm_tree', 'pine_tree', 'willow_tree',
        'bicycle', 'bus', 'motorcycle', 'pickup_truck', 'train',
        'lawn_mower', 'rocket', 'streetcar', 'tank', 'tractor'
    )

    image_dirs, label_dirs = sf.read_subset_cls(subset_dir, shuffle=shuffle, sample_size=sample_size)

    return image_dirs, label_dirs, class_names
Beispiel #3
0
def read_subset(subset_dir, shuffle=False, sample_size=None):
    class_names = ()

    # Shuffling is disabled in order to minimize random file access
    image_dirs, label_dirs = sf.read_subset_cls(subset_dir, shuffle=False, sample_size=sample_size)

    return image_dirs, label_dirs, class_names
Beispiel #4
0
def read_subset(subset_dir, shuffle=False, sample_size=None):
    class_names = ('fake', 'real')

    image_dirs, label_dirs = sf.read_subset_cls(subset_dir,
                                                shuffle=shuffle,
                                                sample_size=sample_size)

    return image_dirs, label_dirs, class_names
Beispiel #5
0
def read_subset(subset_dir, shuffle=False, sample_size=None):
    class_names = []
    for _, item in class_dict.items():
        class_names.append(item.split(', ')[0])
    class_names = tuple(class_names)

    # Shuffling is disabled in order to minimize random file access
    image_dirs, label_dirs = sf.read_subset_cls(subset_dir, shuffle=False, sample_size=sample_size)

    return image_dirs, label_dirs, class_names
Beispiel #6
0
def read_subset(subset_dir, shuffle=False, sample_size=None):
    class_names = []
    for _, item in class_dict.items():
        class_names.append(item.split(', ')[0])
    class_names = tuple(class_names)

    image_dirs, label_dirs = sf.read_subset_cls(subset_dir,
                                                shuffle=False,
                                                sample_size=sample_size)

    return image_dirs, label_dirs, class_names
Beispiel #7
0
def read_subset(subset_dir, shuffle=False, sample_size=None):
    class_names = ('Abyssinian', 'Bengal', 'Birman', 'Bombay',
                   'British_Shorthair', 'Egyptian_Mau', 'Maine_Coon',
                   'Persian', 'Ragdoll', 'Russian_Blue', 'Siamese', 'Sphynx',
                   'american_bulldog', 'american_pit_bull_terrier',
                   'basset_hound', 'beagle', 'boxer', 'chihuahua',
                   'english_cocker_spaniel', 'english_setter',
                   'german_shorthaired', 'great_pyrenees', 'havanese',
                   'japanese_chin', 'keeshond', 'leonberger',
                   'miniature_pinscher', 'newfoundland', 'pomeranian', 'pug',
                   'saint_bernard', 'samoyed', 'scottish_terrier', 'shiba_inu',
                   'staffordshire_bull_terrier', 'wheaten_terrier',
                   'yorkshire_terrier')

    image_dirs, label_dirs = sf.read_subset_cls(subset_dir,
                                                shuffle=shuffle,
                                                sample_size=sample_size)

    return image_dirs, label_dirs, class_names
Beispiel #8
0
def read_subset(subset_dir, shuffle=False, sample_size=None):
    class_names = (
        'Chihuahua', 'Japanese_spaniel', 'Maltese_dog', 'Pekinese', 'Shih-Tzu',
        'Blenheim_spaniel', 'papillon', 'toy_terrier', 'Rhodesian_ridgeback',
        'Afghan_hound', 'basset', 'beagle', 'bloodhound', 'bluetick',
        'black-and-tan_coonhound', 'Walker_hound', 'English_foxhound',
        'redbone', 'borzoi', 'Irish_wolfhound', 'Italian_greyhound', 'whippet',
        'Ibizan_hound', 'Norwegian_elkhound', 'otterhound', 'Saluki',
        'Scottish_deerhound', 'Weimaraner', 'Staffordshire_bullterrier',
        'American_Staffordshire_terrier', 'Bedlington_terrier',
        'Border_terrier', 'Kerry_blue_terrier', 'Irish_terrier',
        'Norfolk_terrier', 'Norwich_terrier', 'Yorkshire_terrier',
        'wire-haired_fox_terrier', 'Lakeland_terrier', 'Sealyham_terrier',
        'Airedale', 'cairn', 'Australian_terrier', 'Dandie_Dinmont',
        'Boston_bull', 'miniature_schnauzer', 'giant_schnauzer',
        'standard_schnauzer', 'Scotch_terrier', 'Tibetan_terrier',
        'silky_terrier', 'soft-coated_wheaten_terrier',
        'West_Highland_white_terrier', 'Lhasa', 'flat-coated_retriever',
        'curly-coated_retriever', 'golden_retriever', 'Labrador_retriever',
        'Chesapeake_Bay_retriever', 'German_short-haired_pointer', 'vizsla',
        'English_setter', 'Irish_setter', 'Gordon_setter', 'Brittany_spaniel',
        'clumber', 'English_springer', 'Welsh_springer_spaniel',
        'cocker_spaniel', 'Sussex_spaniel', 'Irish_water_spaniel', 'kuvasz',
        'schipperke', 'groenendael', 'malinois', 'briard', 'kelpie',
        'komondor', 'Old_English_sheepdog', 'Shetland_sheepdog', 'collie',
        'Border_collie', 'Bouvier_des_Flandres', 'Rottweiler',
        'German_shepherd', 'Doberman', 'miniature_pinscher',
        'Greater_Swiss_Mountain_dog', 'Bernese_mountain_dog', 'Appenzeller',
        'EntleBucher', 'boxer', 'bull_mastiff', 'Tibetan_mastiff',
        'French_bulldog', 'Great_Dane', 'Saint_Bernard', 'Eskimo_dog',
        'malamute', 'Siberian_husky', 'affenpinscher', 'basenji', 'pug',
        'Leonberg', 'Newfoundland', 'Great_Pyrenees', 'Samoyed', 'Pomeranian',
        'chow', 'keeshond', 'Brabancon_griffon', 'Pembroke', 'Cardigan',
        'toy_poodle', 'miniature_poodle', 'standard_poodle',
        'Mexican_hairless', 'dingo', 'dhole', 'African_hunting_dog')

    image_dirs, label_dirs = sf.read_subset_cls(subset_dir,
                                                shuffle=shuffle,
                                                sample_size=sample_size)

    return image_dirs, label_dirs, class_names
Beispiel #9
0
def read_subset(subset_dir, shuffle=False, sample_size=None):
    class_names = (
        'Black_footed_Albatross', 'Laysan_Albatross', 'Sooty_Albatross',
        'Groove_billed_Ani', 'Crested_Auklet', 'Least_Auklet',
        'Parakeet_Auklet', 'Rhinoceros_Auklet', 'Brewer_Blackbird',
        'Red_winged_Blackbird', 'Rusty_Blackbird', 'Yellow_headed_Blackbird',
        'Bobolink', 'Indigo_Bunting', 'Lazuli_Bunting', 'Painted_Bunting',
        'Cardinal', 'Spotted_Catbird', 'Gray_Catbird', 'Yellow_breasted_Chat',
        'Eastern_Towhee', 'Chuck_will_Widow', 'Brandt_Cormorant',
        'Red_faced_Cormorant', 'Pelagic_Cormorant', 'Bronzed_Cowbird',
        'Shiny_Cowbird', 'Brown_Creeper', 'American_Crow', 'Fish_Crow',
        'Black_billed_Cuckoo', 'Mangrove_Cuckoo', 'Yellow_billed_Cuckoo',
        'Gray_crowned_Rosy_Finch', 'Purple_Finch', 'Northern_Flicker',
        'Acadian_Flycatcher', 'Great_Crested_Flycatcher', 'Least_Flycatcher',
        'Olive_sided_Flycatcher', 'Scissor_tailed_Flycatcher',
        'Vermilion_Flycatcher', 'Yellow_bellied_Flycatcher', 'Frigatebird',
        'Northern_Fulmar', 'Gadwall', 'American_Goldfinch',
        'European_Goldfinch', 'Boat_tailed_Grackle', 'Eared_Grebe',
        'Horned_Grebe', 'Pied_billed_Grebe', 'Western_Grebe', 'Blue_Grosbeak',
        'Evening_Grosbeak', 'Pine_Grosbeak', 'Rose_breasted_Grosbeak',
        'Pigeon_Guillemot', 'California_Gull', 'Glaucous_winged_Gull',
        'Heermann_Gull', 'Herring_Gull', 'Ivory_Gull', 'Ring_billed_Gull',
        'Slaty_backed_Gull', 'Western_Gull', 'Anna_Hummingbird',
        'Ruby_throated_Hummingbird', 'Rufous_Hummingbird', 'Green_Violetear',
        'Long_tailed_Jaeger', 'Pomarine_Jaeger', 'Blue_Jay', 'Florida_Jay',
        'Green_Jay', 'Dark_eyed_Junco', 'Tropical_Kingbird', 'Gray_Kingbird',
        'Belted_Kingfisher', 'Green_Kingfisher', 'Pied_Kingfisher',
        'Ringed_Kingfisher', 'White_breasted_Kingfisher',
        'Red_legged_Kittiwake', 'Horned_Lark', 'Pacific_Loon', 'Mallard',
        'Western_Meadowlark', 'Hooded_Merganser', 'Red_breasted_Merganser',
        'Mockingbird', 'Nighthawk', 'Clark_Nutcracker',
        'White_breasted_Nuthatch', 'Baltimore_Oriole', 'Hooded_Oriole',
        'Orchard_Oriole', 'Scott_Oriole', 'Ovenbird', 'Brown_Pelican',
        'White_Pelican', 'Western_Wood_Pewee', 'Sayornis', 'American_Pipit',
        'Whip_poor_Will', 'Horned_Puffin', 'Common_Raven',
        'White_necked_Raven', 'American_Redstart', 'Geococcyx',
        'Loggerhead_Shrike', 'Great_Grey_Shrike', 'Baird_Sparrow',
        'Black_throated_Sparrow', 'Brewer_Sparrow', 'Chipping_Sparrow',
        'Clay_colored_Sparrow', 'House_Sparrow', 'Field_Sparrow',
        'Fox_Sparrow', 'Grasshopper_Sparrow', 'Harris_Sparrow',
        'Henslow_Sparrow', 'Le_Conte_Sparrow', 'Lincoln_Sparrow',
        'Nelson_Sharp_tailed_Sparrow', 'Savannah_Sparrow', 'Seaside_Sparrow',
        'Song_Sparrow', 'Tree_Sparrow', 'Vesper_Sparrow',
        'White_crowned_Sparrow', 'White_throated_Sparrow',
        'Cape_Glossy_Starling', 'Bank_Swallow', 'Barn_Swallow',
        'Cliff_Swallow', 'Tree_Swallow', 'Scarlet_Tanager', 'Summer_Tanager',
        'Artic_Tern', 'Black_Tern', 'Caspian_Tern', 'Common_Tern',
        'Elegant_Tern', 'Forsters_Tern', 'Least_Tern', 'Green_tailed_Towhee',
        'Brown_Thrasher', 'Sage_Thrasher', 'Black_capped_Vireo',
        'Blue_headed_Vireo', 'Philadelphia_Vireo', 'Red_eyed_Vireo',
        'Warbling_Vireo', 'White_eyed_Vireo', 'Yellow_throated_Vireo',
        'Bay_breasted_Warbler', 'Black_and_white_Warbler',
        'Black_throated_Blue_Warbler', 'Blue_winged_Warbler', 'Canada_Warbler',
        'Cape_May_Warbler', 'Cerulean_Warbler', 'Chestnut_sided_Warbler',
        'Golden_winged_Warbler', 'Hooded_Warbler', 'Kentucky_Warbler',
        'Magnolia_Warbler', 'Mourning_Warbler', 'Myrtle_Warbler',
        'Nashville_Warbler', 'Orange_crowned_Warbler', 'Palm_Warbler',
        'Pine_Warbler', 'Prairie_Warbler', 'Prothonotary_Warbler',
        'Swainson_Warbler', 'Tennessee_Warbler', 'Wilson_Warbler',
        'Worm_eating_Warbler', 'Yellow_Warbler', 'Northern_Waterthrush',
        'Louisiana_Waterthrush', 'Bohemian_Waxwing', 'Cedar_Waxwing',
        'American_Three_toed_Woodpecker', 'Pileated_Woodpecker',
        'Red_bellied_Woodpecker', 'Red_cockaded_Woodpecker',
        'Red_headed_Woodpecker', 'Downy_Woodpecker', 'Bewick_Wren',
        'Cactus_Wren', 'Carolina_Wren', 'House_Wren', 'Marsh_Wren',
        'Rock_Wren', 'Winter_Wren', 'Common_Yellowthroat')

    image_dirs, label_dirs = sf.read_subset_cls(subset_dir,
                                                shuffle=shuffle,
                                                sample_size=sample_size)

    return image_dirs, label_dirs, class_names