Beispiel #1
0
class ConvolutionalModel:
    def __init__(self, options, session):
        self._options = options
        self._session = session

        np.random.seed(options.seed)
        tf.set_random_seed(options.seed)
        print(options.num_layers, options.patch_size)
        self.input_size = unet.input_size_needed(options.patch_size,
                                                 options.num_layers)

        self.experiment_name = datetime.now().strftime("%Y-%m-%dT%Hh%Mm%Ss")
        experiment_path = os.path.abspath(
            os.path.join(options.save_path, self.experiment_name))
        summary_path = os.path.join(options.logdir, self.experiment_name)

        self._summary = Summary(options, session, summary_path)
        self.build_graph()

    def cross_entropy_loss(self, labels, pred_logits):
        """BCE loss"""
        cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
            logits=pred_logits, labels=labels)
        loss = tf.reduce_mean(cross_entropy)

        return loss

    def optimize(self, loss):
        """Build the part of the graph to optimize the loss function."""
        opts = self._options

        learning_rate = tf.train.exponential_decay(opts.lr,
                                                   self._global_step,
                                                   1000,
                                                   0.95,
                                                   staircase=True)

        # Use simple momentum for the optimization.
        optimizer = tf.train.MomentumOptimizer(learning_rate, opts.momentum)
        train = optimizer.minimize(loss, global_step=self._global_step)
        return train, learning_rate

    def build_graph(self):
        """Build the graph for the full model."""
        opts = self._options

        # Global step: scalar, i.e., shape [].
        global_step = tf.Variable(0, name="global_step")
        self._global_step = global_step

        # data placeholders
        patches_node = tf.placeholder(tf.float32,
                                      shape=(opts.batch_size, self.input_size,
                                             self.input_size, NUM_CHANNELS),
                                      name="patches")
        labels_node = tf.placeholder(tf.int64,
                                     shape=(opts.batch_size, opts.patch_size,
                                            opts.patch_size),
                                     name="groundtruth")

        patches_node, labels_node = self.stochastic_images_augmentation(
            patches_node, labels_node)

        dropout_keep = tf.placeholder_with_default(1.0,
                                                   shape=(),
                                                   name="dropout_keep")
        self._dropout_keep = dropout_keep

        predict_logits = unet.forward(patches_node,
                                      root_size=opts.root_size,
                                      num_layers=opts.num_layers,
                                      dilated_layers=opts.dilated_layers,
                                      dropout_keep=dropout_keep)
        predictions = tf.nn.softmax(predict_logits, dim=3)
        predictions = predictions[:, :, :, 1]
        loss = self.cross_entropy_loss(labels_node, predict_logits)

        self._train, self._learning_rate = self.optimize(loss)

        self._loss = loss
        self._predictions = predictions
        self._patches_node = patches_node
        self._labels_node = labels_node
        self._predict_logits = predict_logits

        self._summary.initialize_eval_summary()
        self._summary.initialize_train_summary()
        self._summary.initialize_overlap_summary()
        self._summary.initialize_missclassification_summary()

        summary_scalars = {"loss": loss, "learning_rate": self._learning_rate}
        self.summary_op = self._summary.get_summary_op(summary_scalars)

        # Properly initialize all variables.
        tf.global_variables_initializer().run()
        tf.local_variables_initializer().run()

        self.saver = tf.train.Saver(max_to_keep=100)

    def stochastic_images_augmentation(self, imgs, masks):
        """Add stochastic transformation to imgs and masks:
        flip_ud, flip_lr, transpose, rotation by any 90 degree
        """
        original_imgs, original_masks = imgs, masks
        batch_size = int(imgs.shape[0])
        self._image_augmentation = tf.placeholder_with_default(
            False, shape=(), name='image_augmentation_flag')

        def apply_transform(transform, pim):
            proba, img, mask = pim
            return tf.cond(proba > 0.5, lambda: transform(img), lambda: img), \
                   tf.cond(proba > 0.5, lambda: transform(mask), lambda: mask)

        def stochastic_transform(transform, imgs, masks, name):
            proba = tf.random_uniform(shape=(batch_size, ),
                                      name="should_" + name)
            imgs, masks = tf.map_fn(
                lambda pim: apply_transform(tf.image.flip_up_down, pim),
                [proba, imgs, masks],
                dtype=(imgs.dtype, masks.dtype))
            return imgs, masks

        with tf.variable_scope("data_augm"):
            masks = tf.expand_dims(masks, -1)
            imgs, masks = stochastic_transform(tf.image.flip_up_down,
                                               imgs,
                                               masks,
                                               name="flip_up_down")
            imgs, masks = stochastic_transform(tf.image.flip_left_right,
                                               imgs,
                                               masks,
                                               name="flip_up_down")
            imgs, masks = stochastic_transform(tf.image.transpose_image,
                                               imgs,
                                               masks,
                                               name="transpose")

            number_rotation = tf.cast(
                tf.floor(
                    tf.random_uniform(shape=(batch_size, ),
                                      name="number_rotation") * 4), tf.int32)
            imgs, masks = tf.map_fn(lambda kim: (tf.image.rot90(
                kim[1], kim[0]), tf.image.rot90(kim[2], kim[0])),
                                    [number_rotation, imgs, masks],
                                    dtype=(imgs.dtype, masks.dtype))
            masks = tf.squeeze(masks, -1)

        imgs, masks = tf.cond(self._image_augmentation, lambda: (imgs, masks),
                              lambda: (original_imgs, original_masks))

        return imgs, masks

    def train(self, patches, labels_patches, imgs, labels):
        """Train the model for one epoch

        params:
            imgs: [num_images, img_height, img_width, num_channel]
            labels: [num_images, num_patches_side, num_patches_side]
        """
        opts = self._options

        labels_patches = (labels_patches >= 0.5) * 1.
        labels = (labels >= 0.5) * 1.

        num_train_patches = patches.shape[0]

        indices = np.arange(0, num_train_patches)
        np.random.shuffle(indices)

        num_errors = 0
        total = 0

        for batch_i, offset in enumerate(
                range(0, num_train_patches - opts.batch_size,
                      opts.batch_size)):
            batch_indices = indices[offset:offset + opts.batch_size]
            feed_dict = {
                self._patches_node: patches[batch_indices, :, :, :],
                self._labels_node: labels_patches[batch_indices],
                self._dropout_keep: opts.dropout,
                self._image_augmentation: opts.image_augmentation,
            }

            summary_str, _, l, predictions, predictions, step = self._session.run(
                [
                    self.summary_op, self._train, self._loss,
                    self._predict_logits, self._predictions, self._global_step
                ],
                feed_dict=feed_dict)

            print("Batch {} Step {}".format(batch_i, step), end="\r")
            self._summary.add(summary_str, global_step=step)

            num_errors += np.abs(labels_patches[batch_indices] -
                                 predictions).sum()
            total += opts.batch_size
            self._summary.add_to_pixel_missclassification_summary(
                num_errors, total, self._global_step)

            # from time to time do full prediction on some images
            if step > 0 and step % opts.eval_every == 0:
                print()

                images_to_predict = imgs[:opts.num_eval_images, :, :, :]
                masks = self.predict(images_to_predict)
                overlays = images.overlays(images_to_predict, masks)
                pred_masks = ((masks > 0.5) * 1).squeeze()
                true_masks = labels[:opts.num_eval_images, :, :].squeeze()

                self._summary.add_to_eval_summary(masks, overlays, labels,
                                                  self._global_step)
                self._summary.add_to_overlap_summary(true_masks, pred_masks,
                                                     self._global_step)

            if step > 0 and step % opts.train_score_every == 0:
                self._summary.add_to_training_summary(self.predict(imgs),
                                                      labels,
                                                      self._global_step)

        self._summary.flush()

    def predict(self, imgs):
        """Run inference on `imgs` and return predicted masks

        imgs: [num_images, image_height, image_width, num_channel]
        returns: masks [num_images, images_height, image_width] with road probabilities
        """
        opts = self._options

        num_images = imgs.shape[0]
        print("Running prediction on {} images... ".format(num_images), end="")

        if opts.ensemble_prediction:
            print("Start data augmentation for prediction...")
            imgs = images.image_augmentation_ensemble(imgs)
            print("Done")
            num_images = imgs.shape[0]

        offset = int(
            (unet.input_size_needed(opts.patch_size, opts.num_layers) -
             opts.patch_size) / 2)
        imgs_exp = images.mirror_border(imgs, offset)
        patches = images.extract_patches(imgs_exp,
                                         patch_size=unet.input_size_needed(
                                             opts.patch_size, opts.num_layers),
                                         predict_patch_size=opts.patch_size,
                                         stride=opts.stride)
        num_patches = patches.shape[0]
        num_channel = imgs.shape[3]

        # patches padding to have full batches
        if num_patches % opts.batch_size != 0:
            num_extra_patches = opts.batch_size - (num_patches %
                                                   opts.batch_size)
            extra_patches = np.zeros((num_extra_patches, opts.patch_size,
                                      opts.patch_size, num_channel))
            patches = np.concatenate([patches, extra_patches], axis=0)

        num_batches = int(patches.shape[0] / opts.batch_size)
        eval_predictions = np.ndarray(shape=(patches.shape[0], opts.patch_size,
                                             opts.patch_size))

        for batch in range(num_batches):
            offset = batch * opts.batch_size

            feed_dict = {
                self._patches_node:
                patches[offset:offset + opts.batch_size, :, :, :],
            }
            eval_predictions[offset:offset +
                             opts.batch_size, :, :] = self._session.run(
                                 self._predictions, feed_dict)

        # remove padding
        eval_predictions = eval_predictions[0:num_patches]
        patches_per_image = int(num_patches / num_images)

        # construct masks
        new_shape = (num_images, patches_per_image, opts.patch_size,
                     opts.patch_size, 1)
        masks = images.images_from_patches(eval_predictions.reshape(new_shape),
                                           stride=opts.stride)

        if opts.ensemble_prediction:
            print("Invert Data augmentation and average predictions...")
            masks = images.invert_image_augmentation_ensemble(masks)
            print("Averaging done...")

        print("Prediction Done")
        return masks

    def predict_batchwise(self, imgs, pred_batch_size):
        masks = []
        for i in range(int(np.ceil(imgs.shape[0] / pred_batch_size))):
            start = i * pred_batch_size
            end = start + pred_batch_size
            masks.append(self.predict(imgs[start:end]))

        if len(masks) > 1:
            masks = np.concatenate(masks, axis=0)
            return masks
        else:
            return masks[0]

    def save(self, epoch=0):
        opts = self._options
        model_data_dir = os.path.abspath(
            os.path.join(opts.save_path, self.experiment_name,
                         'model-epoch-{:03d}.chkpt'.format(epoch)))
        saved_path = self.saver.save(self._session, model_data_dir)
        # create checkpoint
        print("Model saved in file: {}".format(saved_path))

    def restore(self, date=None, epoch=None, file=None):
        """Restores model from saved checkpoint

        date: which model should be restored (most recent if None)
        epoch: at which epoch model should be restored (most recent if None)
        file: provide directly the checkpoint file te restore
        """
        opts = self._options

        if file is not None:
            model_data_dir = file
        else:
            # get experiment name to restore from
            if date is None:
                dates = [
                    date
                    for date in glob.glob(os.path.join(opts.save_path, "*"))
                    if os.path.isdir(date)
                ]
                model_data_dir = sorted(dates)[-1]
            else:
                model_data_dir = os.path.abspath(
                    os.path.join(opts.save_path, date))

            # get epoch construct final path
            if epoch is None:
                model_data_dir = os.path.abspath(
                    os.path.join(model_data_dir, 'model-epoch-*.chkpt.meta'))
                model_data_dir = sorted(glob.glob(model_data_dir))[-1][:-5]
            else:
                model_data_dir = os.path.abspath(
                    os.path.join(model_data_dir,
                                 'model-epoch-{:03d}.chkpt'.format(epoch)))

        self.saver.restore(self._session, model_data_dir)
        print("Model restored from from file: {}".format(model_data_dir))
Beispiel #2
0
class ConvolutionalModel:
    def __init__(self, options, session):
        self._options = options
        self._session = session

        self.train_images_shape = None

        np.random.seed(options.seed)
        tf.set_random_seed(options.seed)
        self.input_size = self._options.patch_size

        self.experiment_name = datetime.now().strftime("%Y%m%d%H%M%S")
        experiment_path = os.path.abspath(
            os.path.join(options.save_path, self.experiment_name))
        self.summary_path = os.path.join(
            options.logdir, self.experiment_name + options.log_suffix)

        self._summary = Summary(options, session)
        self.build_graph()

    def calculate_loss_abs(self, labels, prediction):
        """Calculate absolute difference loss

        """
        loss = tf.losses.absolute_difference(labels, prediction)

        return loss

    def calculate_loss_mse(self, labels, prediction):
        """Calculate mean squared error loss

        """
        loss = tf.losses.mean_squared_error(labels, prediction)

        return loss

    def calculate_loss_snr(self, labels, prediction):
        """Calculate loss based on signal to noise
        """
        loss = tf.negative(tf.multiply(
            tf.constant(20.0),
            tf.subtract(
                self.tf_log_10(self.tf_range(labels)),
                self.tf_log_10(
                    tf.sqrt(tf.losses.mean_squared_error(labels,
                                                         prediction))))),
                           name="snr")
        print(loss)

        return loss

    def tf_log_10(self, x):
        """ log10 implemented using tensorflow
        """
        return tf.divide(tf.log(x), tf.log(tf.constant(10.0)))

    def tf_range(self, img):
        """ calculate dynamic range of an image using tensorflow
        """
        return tf.subtract(tf.reduce_max(img), tf.reduce_min(img))

    def optimize(self, loss):
        """optimize with MomentumOptimizer

        """
        learning_rate = tf.train.exponential_decay(self._options.learning_rate,
                                                   self._global_step,
                                                   100,
                                                   0.99,
                                                   staircase=True)

        optimizer = tf.train.MomentumOptimizer(learning_rate, 0.9)
        train = optimizer.minimize(loss, global_step=self._global_step)

        return train, learning_rate

    def adam_optimize(self, loss):
        """ optimize with AdamOptimizer
        """
        optimizer = tf.train.AdamOptimizer(self._options.learning_rate,
                                           epsilon=10e-3)
        train = optimizer.minimize(loss, global_step=self._global_step)

        return train, optimizer._lr

    def build_graph(self):
        """
            Build the tensorflow graph for the model
        """
        opts = self._options

        global_step = tf.Variable(0, name="global_step")
        self._global_step = global_step

        # data placeholders
        patches_node = tf.placeholder(tf.float32,
                                      shape=(self._options.batch_size,
                                             self.input_size, self.input_size,
                                             1),
                                      name="patches")

        labels_node = tf.placeholder(tf.float32,
                                     shape=(self._options.batch_size,
                                            self._options.patch_size,
                                            self._options.patch_size, 1),
                                     name="labels")

        dropout_keep = tf.placeholder_with_default(1.0,
                                                   shape=(),
                                                   name="dropout_keep")
        self._dropout_keep = dropout_keep

        print("Patches node: {}".format(patches_node))
        predict_logits = unet.forward(patches_node,
                                      root_size=opts.root_size,
                                      num_layers=opts.num_layers,
                                      dropout_keep=dropout_keep,
                                      dilation_size=opts.dilation_size,
                                      conv_size=opts.conv_size)

        predictions = predict_logits

        print("Predicted logits: {}".format(predict_logits))
        loss = self.calculate_loss_snr(labels_node, predict_logits)

        self._train, self._learning_rate = self.adam_optimize(loss)

        self._loss = loss
        self._predictions = predictions
        self._patches_node = patches_node
        self._labels_node = labels_node
        self._predict_logits = predict_logits

        self._summary.create_writer(self.summary_path)
        self._summary.initialize_snr_summary()
        self._summary.initialize_eval_summary()

        summary_scalars = {"loss": loss, "learning_rate": self._learning_rate}
        self.summary_op = self._summary.get_summary_op(summary_scalars)

        # Properly initialize all variables.
        tf.global_variables_initializer().run()
        tf.local_variables_initializer().run()

        self.saver = tf.train.Saver(max_to_keep=100)

    def train(self, patches, labels_patches, eval_images,
              downsampled_eval_images):
        """Train the model for one epoch

        params:
            patches: [num_patches, patch_height, patch_width, num_channel]
            labels_patches: [num_patches, patch_height, patch_width, num_channel]
            eval_images: [num_images, img_height, img_width, num_channel]
            downsampled_eval_images: [num_images, img_height, img_width, num_channel]
        """
        opts = self._options

        num_train_patches = patches.shape[0]

        indices = np.arange(0, num_train_patches)

        # randomize indices for training
        np.random.shuffle(indices)

        for batch_i, offset in enumerate(
                range(0, num_train_patches - opts.batch_size,
                      opts.batch_size)):
            batch_indices = indices[offset:offset + opts.batch_size]

            feed_dict = {
                self._patches_node: patches[batch_indices, :, :, :],
                self._labels_node: labels_patches[batch_indices, :, :, :],
                self._dropout_keep: opts.dropout,
            }

            summary_str, _, l, predictions, predictions, step = self._session.run(
                [
                    self.summary_op, self._train, self._loss,
                    self._predict_logits, self._predictions, self._global_step
                ],
                feed_dict=feed_dict)

            print("Batch {} Step {}".format(batch_i, step), end="\r")
            self._summary.add(summary_str, global_step=step)

            snr = images.psnr(labels_patches[batch_indices], predictions)
            self._summary.add_to_snr_summary(snr, self._global_step)

            # Do evaluation once per epoch
            if step > 0 and step % int(
                    patches.shape[0] / opts.batch_size) == 0:
                predictions = self.predict(downsampled_eval_images)

                self._summary.add_to_eval_summary(eval_images,
                                                  downsampled_eval_images,
                                                  predictions,
                                                  self._global_step)

        self._summary.flush()

    def predict(self, imgs):
        """Run inference on `imgs` and return predictions

        imgs: [num_images, image_height, image_width, num_channel]
        returns: predictions [num_images, images_height, image_width, num_channel]
        """
        opts = self._options

        num_images = imgs.shape[0]

        print()
        print("Running prediction on {} images with shape {}... ".format(
            num_images, imgs.shape))

        patches = tf.extract_image_patches(
            imgs, [1, self.input_size, self.input_size, 1],
            [1, opts.stride, opts.stride, 1], [1, 1, 1, 1], 'VALID').eval()
        patches = patches.reshape((-1, self.input_size, self.input_size, 1))

        num_patches = patches.shape[0]

        # patches padding to have full batches
        if num_patches % opts.batch_size != 0:
            num_extra_patches = opts.batch_size - (num_patches %
                                                   opts.batch_size)
            extra_patches = np.zeros(
                (num_extra_patches, self.input_size, self.input_size, 1))
            patches = np.concatenate([patches, extra_patches], axis=0)

        num_patches = patches.shape[0]

        num_batches = int(num_patches / opts.batch_size)
        eval_predictions = np.ndarray(shape=(num_patches, opts.patch_size,
                                             opts.patch_size, 1))
        print("Patches to predict: ", num_patches)
        print("Shape eval predictions: ", eval_predictions.shape)

        # do batchwise prediction
        for batch in range(num_batches):
            offset = batch * opts.batch_size

            feed_dict = {
                self._patches_node:
                patches[offset:offset + opts.batch_size, :, :, :],
            }
            eval_predictions[offset:offset +
                             opts.batch_size, :, :, :] = self._session.run(
                                 self._predictions, feed_dict)

        # remove padding
        eval_predictions = eval_predictions[0:num_patches]

        # construct predicted images
        predictions = images.images_from_patches(eval_predictions,
                                                 imgs.shape,
                                                 stride=opts.stride)

        # Clipping for display in tensorboard
        predictions[predictions < 0] = 0
        predictions[predictions > 1] = 1

        return predictions

    def save(self, epoch=0):
        """
            Saves the training state of the model to disk to continue training at a later point
        """
        opts = self._options
        model_data_dir = os.path.abspath(
            os.path.join(opts.save_path, self.experiment_name,
                         'model-epoch-{:03d}.chkpt'.format(epoch)))
        saved_path = self.saver.save(self._session, model_data_dir)
        # create checkpoint
        print("Model saved in file: {}".format(saved_path))