Beispiel #1
0
def test_off_surface_eval(ctx_factory, use_fmm, do_plot=False):
    logging.basicConfig(level=logging.INFO)

    cl_ctx = ctx_factory()
    queue = cl.CommandQueue(cl_ctx)

    # prevent cache 'splosion
    from sympy.core.cache import clear_cache
    clear_cache()

    nelements = 30
    target_order = 8
    qbx_order = 3
    if use_fmm:
        fmm_order = qbx_order
    else:
        fmm_order = False

    mesh = make_curve_mesh(partial(ellipse, 3),
                           np.linspace(0, 1, nelements + 1), target_order)

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory

    pre_density_discr = Discretization(
        cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))
    qbx, _ = QBXLayerPotentialSource(
        pre_density_discr,
        4 * target_order,
        qbx_order,
        fmm_order=fmm_order,
    ).with_refinement()

    density_discr = qbx.density_discr

    from sumpy.kernel import LaplaceKernel
    op = sym.D(LaplaceKernel(2), sym.var("sigma"), qbx_forced_limit=-2)

    sigma = density_discr.zeros(queue) + 1

    fplot = FieldPlotter(np.zeros(2), extent=0.54, npoints=30)
    from pytential.target import PointsTarget
    fld_in_vol = bind((qbx, PointsTarget(fplot.points)), op)(queue,
                                                             sigma=sigma)

    err = cl.clmath.fabs(fld_in_vol - (-1))

    linf_err = cl.array.max(err).get()
    print("l_inf error:", linf_err)

    if do_plot:
        fplot.show_scalar_in_matplotlib(fld_in_vol.get())
        import matplotlib.pyplot as pt
        pt.colorbar()
        pt.show()

    assert linf_err < 1e-3
Beispiel #2
0
def test_off_surface_eval(actx_factory, use_fmm, visualize=False):
    logging.basicConfig(level=logging.INFO)

    actx = actx_factory()

    # prevent cache 'splosion
    from sympy.core.cache import clear_cache
    clear_cache()

    nelements = 30
    target_order = 8
    qbx_order = 3
    if use_fmm:
        fmm_order = qbx_order
    else:
        fmm_order = False

    mesh = mgen.make_curve_mesh(partial(mgen.ellipse, 3),
                                np.linspace(0, 1, nelements + 1), target_order)

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory

    pre_density_discr = Discretization(
        actx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))
    qbx = QBXLayerPotentialSource(
        pre_density_discr,
        4 * target_order,
        qbx_order,
        fmm_order=fmm_order,
    )

    from pytential.target import PointsTarget
    fplot = FieldPlotter(np.zeros(2), extent=0.54, npoints=30)
    targets = PointsTarget(actx.freeze(actx.from_numpy(fplot.points)))

    places = GeometryCollection((qbx, targets))
    density_discr = places.get_discretization(places.auto_source.geometry)

    from sumpy.kernel import LaplaceKernel
    op = sym.D(LaplaceKernel(2), sym.var("sigma"), qbx_forced_limit=-2)

    sigma = density_discr.zeros(actx) + 1
    fld_in_vol = bind(places, op)(actx, sigma=sigma)
    fld_in_vol_exact = -1

    linf_err = actx.to_numpy(
        actx.np.linalg.norm(fld_in_vol - fld_in_vol_exact, ord=np.inf))
    logger.info("l_inf error: %.12e", linf_err)

    if visualize:
        fplot.show_scalar_in_matplotlib(actx.to_numpy(fld_in_vol))
        import matplotlib.pyplot as pt
        pt.colorbar()
        pt.show()

    assert linf_err < 1e-3
Beispiel #3
0
def main():
    from sumpy.kernel import (  # noqa: F401
        YukawaKernel, HelmholtzKernel, LaplaceKernel)
    tctx = t.ToyContext(
        cl.create_some_context(),
        #LaplaceKernel(2),
        YukawaKernel(2),
        extra_kernel_kwargs={"lam": 5},
        #HelmholtzKernel(2), extra_kernel_kwargs={"k": 0.3},
    )

    pt_src = t.PointSources(tctx, np.random.rand(2, 50) - 0.5, np.ones(50))

    fp = FieldPlotter([3, 0], extent=8)

    if 0 and plt is not None:
        t.logplot(fp, pt_src, cmap="jet")
        plt.colorbar()
        plt.show()

    mexp = t.multipole_expand(pt_src, [0, 0], 5)
    mexp2 = t.multipole_expand(mexp, [0, 0.25])  # noqa: F841
    lexp = t.local_expand(mexp, [3, 0])
    lexp2 = t.local_expand(lexp, [3, 1], 3)

    #diff = mexp - pt_src
    #diff = mexp2 - pt_src
    diff = lexp2 - pt_src

    print(t.l_inf(diff, 1.2, center=lexp2.center))
    if 1 and plt is not None:
        t.logplot(fp, diff, cmap="jet", vmin=-3, vmax=0)
        plt.colorbar()
        plt.show()
Beispiel #4
0
def test_unregularized_off_surface_fmm_vs_direct(ctx_factory):
    cl_ctx = ctx_factory()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    nelements = 300
    target_order = 8
    fmm_order = 4

    # {{{ geometry

    mesh = make_curve_mesh(WobblyCircle.random(8, seed=30),
                np.linspace(0, 1, nelements+1),
                target_order)

    from pytential.unregularized import UnregularizedLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory

    density_discr = Discretization(
            actx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))
    direct = UnregularizedLayerPotentialSource(
            density_discr,
            fmm_order=False,
            )
    fmm = direct.copy(
            fmm_level_to_order=lambda kernel, kernel_args, tree, level: fmm_order)

    sigma = density_discr.zeros(actx) + 1

    fplot = FieldPlotter(np.zeros(2), extent=5, npoints=100)
    from pytential.target import PointsTarget
    ptarget = PointsTarget(fplot.points)

    from pytential import GeometryCollection
    places = GeometryCollection({
        "unregularized_direct": direct,
        "unregularized_fmm": fmm,
        "targets": ptarget})

    # }}}

    # {{{ check

    from sumpy.kernel import LaplaceKernel
    op = sym.D(LaplaceKernel(2), sym.var("sigma"), qbx_forced_limit=None)

    direct_fld_in_vol = bind(places, op,
            auto_where=("unregularized_direct", "targets"))(
                    actx, sigma=sigma)
    fmm_fld_in_vol = bind(places, op,
            auto_where=("unregularized_fmm", "targets"))(actx, sigma=sigma)

    err = actx.np.fabs(fmm_fld_in_vol - direct_fld_in_vol)
    linf_err = actx.to_numpy(err).max()
    print("l_inf error:", linf_err)

    assert linf_err < 5e-3
Beispiel #5
0
def l_inf(psource, radius, center=None, npoints=100, debug=False):
    if center is None:
        center = psource.center

    restr = psource * OneOnBallPotential(psource.toy_ctx, center, radius)

    from sumpy.visualization import FieldPlotter
    fp = FieldPlotter(center, extent=2 * radius, npoints=npoints)
    z = restr.eval(fp.points)

    if debug:
        fp.show_scalar_in_matplotlib(np.log10(np.abs(z + 1e-15)))
        import matplotlib.pyplot as pt
        pt.colorbar()
        pt.show()

    return np.max(np.abs(z))
Beispiel #6
0
def l_inf(psource, radius, center=None, npoints=100, debug=False):
    if center is None:
        center = psource.center

    restr = psource * OneOnBallPotential(psource.toy_ctx, center, radius)

    from sumpy.visualization import FieldPlotter
    fp = FieldPlotter(center, extent=2*radius, npoints=npoints)
    z = restr.eval(fp.points)

    if debug:
        fp.show_scalar_in_matplotlib(
                np.log10(np.abs(z + 1e-15)))
        import matplotlib.pyplot as pt
        pt.colorbar()
        pt.show()

    return np.max(np.abs(z))
Beispiel #7
0
def test_unregularized_off_surface_fmm_vs_direct(ctx_factory):
    cl_ctx = ctx_factory()
    queue = cl.CommandQueue(cl_ctx)

    nelements = 300
    target_order = 8
    fmm_order = 4

    mesh = make_curve_mesh(WobblyCircle.random(8, seed=30),
                           np.linspace(0, 1, nelements + 1), target_order)

    from pytential.unregularized import UnregularizedLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory

    density_discr = Discretization(
        cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))
    direct = UnregularizedLayerPotentialSource(
        density_discr,
        fmm_order=False,
    )
    fmm = direct.copy(
        fmm_level_to_order=lambda kernel, kernel_args, tree, level: fmm_order)

    sigma = density_discr.zeros(queue) + 1

    fplot = FieldPlotter(np.zeros(2), extent=5, npoints=100)
    from pytential.target import PointsTarget
    ptarget = PointsTarget(fplot.points)
    from sumpy.kernel import LaplaceKernel

    op = sym.D(LaplaceKernel(2), sym.var("sigma"), qbx_forced_limit=None)

    direct_fld_in_vol = bind((direct, ptarget), op)(queue, sigma=sigma)
    fmm_fld_in_vol = bind((fmm, ptarget), op)(queue, sigma=sigma)

    err = cl.clmath.fabs(fmm_fld_in_vol - direct_fld_in_vol)

    linf_err = cl.array.max(err).get()
    print("l_inf error:", linf_err)
    assert linf_err < 5e-3
Beispiel #8
0
def main(mesh_name="ellipsoid"):
    import logging
    logger = logging.getLogger(__name__)
    logging.basicConfig(level=logging.WARNING)  # INFO for more progress info

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    if mesh_name == "ellipsoid":
        cad_file_name = "geometries/ellipsoid.step"
        h = 0.6
    elif mesh_name == "two-cylinders":
        cad_file_name = "geometries/two-cylinders-smooth.step"
        h = 0.4
    else:
        raise ValueError("unknown mesh name: %s" % mesh_name)

    from meshmode.mesh.io import generate_gmsh, FileSource
    mesh = generate_gmsh(
        FileSource(cad_file_name),
        2,
        order=2,
        other_options=["-string",
                       "Mesh.CharacteristicLengthMax = %g;" % h],
        target_unit="MM")

    from meshmode.mesh.processing import perform_flips
    # Flip elements--gmsh generates inside-out geometry.
    mesh = perform_flips(mesh, np.ones(mesh.nelements))

    from meshmode.mesh.processing import find_bounding_box
    bbox_min, bbox_max = find_bounding_box(mesh)
    bbox_center = 0.5 * (bbox_min + bbox_max)
    bbox_size = max(bbox_max - bbox_min) / 2

    logger.info("%d elements" % mesh.nelements)

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory

    density_discr = Discretization(
        actx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))

    qbx = QBXLayerPotentialSource(density_discr,
                                  4 * target_order,
                                  qbx_order,
                                  fmm_order=qbx_order + 3,
                                  target_association_tolerance=0.15)

    from pytential.target import PointsTarget
    fplot = FieldPlotter(bbox_center, extent=3.5 * bbox_size, npoints=150)

    from pytential import GeometryCollection
    places = GeometryCollection(
        {
            "qbx": qbx,
            "targets": PointsTarget(fplot.points)
        }, auto_where="qbx")
    density_discr = places.get_discretization("qbx")

    nodes = thaw(actx, density_discr.nodes())
    angle = actx.np.arctan2(nodes[1], nodes[0])

    if k:
        kernel = HelmholtzKernel(3)
    else:
        kernel = LaplaceKernel(3)

    #op = sym.d_dx(sym.S(kernel, sym.var("sigma"), qbx_forced_limit=None))
    op = sym.D(kernel, sym.var("sigma"), qbx_forced_limit=None)
    #op = sym.S(kernel, sym.var("sigma"), qbx_forced_limit=None)

    sigma = actx.np.cos(mode_nr * angle)
    if 0:
        from meshmode.dof_array import flatten, unflatten
        sigma = flatten(0 * angle)
        from random import randrange
        for i in range(5):
            sigma[randrange(len(sigma))] = 1
        sigma = unflatten(actx, density_discr, sigma)

    if isinstance(kernel, HelmholtzKernel):
        for i, elem in np.ndenumerate(sigma):
            sigma[i] = elem.astype(np.complex128)

    fld_in_vol = actx.to_numpy(
        bind(places, op, auto_where=("qbx", "targets"))(actx, sigma=sigma,
                                                        k=k))

    #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
    fplot.write_vtk_file("layerpot-3d-potential.vts",
                         [("potential", fld_in_vol)])

    bdry_normals = bind(places, sym.normal(
        density_discr.ambient_dim))(actx).as_vector(dtype=object)

    from meshmode.discretization.visualization import make_visualizer
    bdry_vis = make_visualizer(actx, density_discr, target_order)
    bdry_vis.write_vtk_file("layerpot-3d-density.vtu", [
        ("sigma", sigma),
        ("bdry_normals", bdry_normals),
    ])
Beispiel #9
0
def test_p2e2p(ctx_factory, base_knl, expn_class, order,
               with_source_derivative):
    #logging.basicConfig(level=logging.INFO)

    from sympy.core.cache import clear_cache
    clear_cache()

    ctx = ctx_factory()
    queue = cl.CommandQueue(ctx)

    np.random.seed(17)

    res = 100
    nsources = 100

    extra_kwargs = {}
    if isinstance(base_knl, HelmholtzKernel):
        if base_knl.allow_evanescent:
            extra_kwargs["k"] = 0.2 * (0.707 + 0.707j)
        else:
            extra_kwargs["k"] = 0.2
    if isinstance(base_knl, StokesletKernel):
        extra_kwargs["mu"] = 0.2

    if with_source_derivative:
        knl = DirectionalSourceDerivative(base_knl, "dir_vec")
    else:
        knl = base_knl

    out_kernels = [
        knl,
        AxisTargetDerivative(0, knl),
    ]
    expn = expn_class(knl, order=order)

    from sumpy import P2EFromSingleBox, E2PFromSingleBox, P2P
    p2e = P2EFromSingleBox(ctx, expn, kernels=[knl])
    e2p = E2PFromSingleBox(ctx, expn, kernels=out_kernels)
    p2p = P2P(ctx, out_kernels, exclude_self=False)

    from pytools.convergence import EOCRecorder
    eoc_rec_pot = EOCRecorder()
    eoc_rec_grad_x = EOCRecorder()

    from sumpy.expansion.local import LocalExpansionBase
    if issubclass(expn_class, LocalExpansionBase):
        h_values = [1 / 5, 1 / 7, 1 / 20]
    else:
        h_values = [1 / 2, 1 / 3, 1 / 5]

    center = np.array([2, 1, 0][:knl.dim], np.float64)
    sources = (0.7 *
               (-0.5 + np.random.rand(knl.dim, nsources).astype(np.float64)) +
               center[:, np.newaxis])

    strengths = np.ones(nsources, dtype=np.float64) * (1 / nsources)

    source_boxes = np.array([0], dtype=np.int32)
    box_source_starts = np.array([0], dtype=np.int32)
    box_source_counts_nonchild = np.array([nsources], dtype=np.int32)

    extra_source_kwargs = extra_kwargs.copy()
    if isinstance(knl, DirectionalSourceDerivative):
        alpha = np.linspace(0, 2 * np.pi, nsources, np.float64)
        dir_vec = np.vstack([np.cos(alpha), np.sin(alpha)])
        extra_source_kwargs["dir_vec"] = dir_vec

    from sumpy.visualization import FieldPlotter

    for h in h_values:
        if issubclass(expn_class, LocalExpansionBase):
            loc_center = np.array([5.5, 0.0, 0.0][:knl.dim]) + center
            centers = np.array(loc_center,
                               dtype=np.float64).reshape(knl.dim, 1)
            fp = FieldPlotter(loc_center, extent=h, npoints=res)
        else:
            eval_center = np.array([1 / h, 0.0, 0.0][:knl.dim]) + center
            fp = FieldPlotter(eval_center, extent=0.1, npoints=res)
            centers = (np.array([0.0, 0.0, 0.0][:knl.dim],
                                dtype=np.float64).reshape(knl.dim, 1) +
                       center[:, np.newaxis])

        targets = fp.points

        rscale = 0.5  # pick something non-1

        # {{{ apply p2e

        evt, (mpoles, ) = p2e(
            queue,
            source_boxes=source_boxes,
            box_source_starts=box_source_starts,
            box_source_counts_nonchild=box_source_counts_nonchild,
            centers=centers,
            sources=sources,
            strengths=(strengths, ),
            nboxes=1,
            tgt_base_ibox=0,
            rscale=rscale,

            #flags="print_hl_cl",
            out_host=True,
            **extra_source_kwargs)

        # }}}

        # {{{ apply e2p

        ntargets = targets.shape[-1]

        box_target_starts = np.array([0], dtype=np.int32)
        box_target_counts_nonchild = np.array([ntargets], dtype=np.int32)

        evt, (
            pot,
            grad_x,
        ) = e2p(
            queue,
            src_expansions=mpoles,
            src_base_ibox=0,
            target_boxes=source_boxes,
            box_target_starts=box_target_starts,
            box_target_counts_nonchild=box_target_counts_nonchild,
            centers=centers,
            targets=targets,
            rscale=rscale,

            #flags="print_hl_cl",
            out_host=True,
            **extra_kwargs)

        # }}}

        # {{{ compute (direct) reference solution

        evt, (
            pot_direct,
            grad_x_direct,
        ) = p2p(queue,
                targets,
                sources, (strengths, ),
                out_host=True,
                **extra_source_kwargs)

        err_pot = la.norm((pot - pot_direct) / res**2)
        err_grad_x = la.norm((grad_x - grad_x_direct) / res**2)

        if 1:
            err_pot = err_pot / la.norm((pot_direct) / res**2)
            err_grad_x = err_grad_x / la.norm((grad_x_direct) / res**2)

        if 0:
            import matplotlib.pyplot as pt
            from matplotlib.colors import Normalize

            pt.subplot(131)
            im = fp.show_scalar_in_matplotlib(pot.real)
            im.set_norm(Normalize(vmin=-0.1, vmax=0.1))

            pt.subplot(132)
            im = fp.show_scalar_in_matplotlib(pot_direct.real)
            im.set_norm(Normalize(vmin=-0.1, vmax=0.1))
            pt.colorbar()

            pt.subplot(133)
            im = fp.show_scalar_in_matplotlib(
                np.log10(1e-15 + np.abs(pot - pot_direct)))
            im.set_norm(Normalize(vmin=-6, vmax=1))

            pt.colorbar()
            pt.show()

        # }}}

        eoc_rec_pot.add_data_point(h, err_pot)
        eoc_rec_grad_x.add_data_point(h, err_grad_x)

    print(expn_class, knl, order)
    print("POTENTIAL:")
    print(eoc_rec_pot)
    print("X TARGET DERIVATIVE:")
    print(eoc_rec_grad_x)

    tgt_order = order + 1
    if issubclass(expn_class, LocalExpansionBase):
        tgt_order_grad = tgt_order - 1
        slack = 0.7
        grad_slack = 0.5
    else:
        tgt_order_grad = tgt_order + 1

        slack = 0.5
        grad_slack = 1

        if order <= 2:
            slack += 1
            grad_slack += 1

    if isinstance(knl, DirectionalSourceDerivative):
        slack += 1
        grad_slack += 2

    if isinstance(base_knl, DirectionalSourceDerivative):
        slack += 1
        grad_slack += 2

    if isinstance(base_knl, HelmholtzKernel):
        if base_knl.allow_evanescent:
            slack += 0.5
            grad_slack += 0.5

        if issubclass(expn_class, VolumeTaylorMultipoleExpansionBase):
            slack += 0.3
            grad_slack += 0.3

    assert eoc_rec_pot.order_estimate() > tgt_order - slack
    assert eoc_rec_grad_x.order_estimate() > tgt_order_grad - grad_slack
def main():
    import logging
    logging.basicConfig(level=logging.WARNING)  # INFO for more progress info

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    from meshmode.mesh.generation import generate_torus

    rout = 10
    rin = 1
    if 1:
        base_mesh = generate_torus(rout, rin, 40, 4, mesh_order)

        from meshmode.mesh.processing import affine_map, merge_disjoint_meshes
        # nx = 1
        # ny = 1
        nz = 1
        dz = 0
        meshes = [
            affine_map(base_mesh,
                       A=np.diag([1, 1, 1]),
                       b=np.array([0, 0, iz * dz])) for iz in range(nz)
        ]

        mesh = merge_disjoint_meshes(meshes, single_group=True)

        if 0:
            from meshmode.mesh.visualization import draw_curve
            draw_curve(mesh)
            import matplotlib.pyplot as plt
            plt.show()

    pre_density_discr = Discretization(
        cl_ctx, mesh,
        InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order))

    from pytential.qbx import (QBXLayerPotentialSource,
                               QBXTargetAssociationFailedException)
    qbx, _ = QBXLayerPotentialSource(
        pre_density_discr,
        fine_order=bdry_ovsmp_quad_order,
        qbx_order=qbx_order,
        fmm_order=fmm_order,
    ).with_refinement()
    density_discr = qbx.density_discr

    # {{{ describe bvp

    from sumpy.kernel import LaplaceKernel
    kernel = LaplaceKernel(3)

    cse = sym.cse

    sigma_sym = sym.var("sigma")
    #sqrt_w = sym.sqrt_jac_q_weight(3)
    sqrt_w = 1
    inv_sqrt_w_sigma = cse(sigma_sym / sqrt_w)

    # -1 for interior Dirichlet
    # +1 for exterior Dirichlet
    loc_sign = +1

    bdry_op_sym = (
        loc_sign * 0.5 * sigma_sym + sqrt_w *
        (sym.S(kernel, inv_sqrt_w_sigma) + sym.D(kernel, inv_sqrt_w_sigma)))

    # }}}

    bound_op = bind(qbx, bdry_op_sym)

    # {{{ fix rhs and solve

    nodes = density_discr.nodes().with_queue(queue)
    source = np.array([rout, 0, 0])

    def u_incoming_func(x):
        #        return 1/cl.clmath.sqrt( (x[0] - source[0])**2
        #                                +(x[1] - source[1])**2
        #                                +(x[2] - source[2])**2 )
        return 1.0 / la.norm(x.get() - source[:, None], axis=0)

    bc = cl.array.to_device(queue, u_incoming_func(nodes))

    bvp_rhs = bind(qbx, sqrt_w * sym.var("bc"))(queue, bc=bc)

    from pytential.solve import gmres
    gmres_result = gmres(bound_op.scipy_op(queue, "sigma", dtype=np.float64),
                         bvp_rhs,
                         tol=1e-14,
                         progress=True,
                         stall_iterations=0,
                         hard_failure=True)

    sigma = bind(qbx,
                 sym.var("sigma") / sqrt_w)(queue, sigma=gmres_result.solution)

    # }}}

    from meshmode.discretization.visualization import make_visualizer
    bdry_vis = make_visualizer(queue, density_discr, 20)
    bdry_vis.write_vtk_file("laplace.vtu", [
        ("sigma", sigma),
    ])

    # {{{ postprocess/visualize

    repr_kwargs = dict(qbx_forced_limit=None)
    representation_sym = (sym.S(kernel, inv_sqrt_w_sigma, **repr_kwargs) +
                          sym.D(kernel, inv_sqrt_w_sigma, **repr_kwargs))

    from sumpy.visualization import FieldPlotter
    fplot = FieldPlotter(np.zeros(3), extent=20, npoints=50)

    targets = cl.array.to_device(queue, fplot.points)

    qbx_stick_out = qbx.copy(target_stick_out_factor=0.2)

    try:
        fld_in_vol = bind((qbx_stick_out, PointsTarget(targets)),
                          representation_sym)(queue, sigma=sigma).get()
    except QBXTargetAssociationFailedException as e:
        fplot.write_vtk_file("failed-targets.vts",
                             [("failed", e.failed_target_flags.get(queue))])
        raise

    #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
    fplot.write_vtk_file("potential-laplace-3d.vts", [
        ("potential", fld_in_vol),
    ])
def run_test(cl_ctx, queue):

    q_order = 5
    qbx_order = q_order
    fmm_backend = "sumpy"
    mesh = get_ellipse_mesh(20, 40, mesh_order=5)
    a = 1
    b = 1 / 40

    if 0:
        from meshmode.mesh.visualization import draw_curve
        import matplotlib.pyplot as plt
        draw_curve(mesh)
        plt.axes().set_aspect('equal')
        plt.show()

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory

    pre_density_discr = Discretization(
        cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(q_order))

    refiner_extra_kwargs = {
        # "_expansion_disturbance_tolerance": 0.05,
        "_scaled_max_curvature_threshold": 1,
        "maxiter": 10,
    }

    qbx, _ = QBXLayerPotentialSource(
        pre_density_discr,
        fine_order=4 * q_order,
        qbx_order=qbx_order,
        fmm_backend=fmm_backend,
        fmm_order=qbx_order + 5,
    ).with_refinement(**refiner_extra_kwargs)

    if 1:
        print("%d stage-1 elements after refinement" %
              qbx.density_discr.mesh.nelements)
        print("%d stage-2 elements after refinement" %
              qbx.stage2_density_discr.mesh.nelements)
        print("quad stage-2 elements have %d nodes" %
              qbx.quad_stage2_density_discr.groups[0].nunit_nodes)

    def reference_solu(rvec):
        # a harmonic function
        x, y = rvec
        return 2.1 * x * y + (x**2 - y**2) * 0.5 + x

    bvals = reference_solu(qbx.density_discr.nodes().with_queue(queue))

    from pytential.symbolic.pde.scalar import DirichletOperator
    from sumpy.kernel import LaplaceKernel
    from pytential import sym, bind
    op = DirichletOperator(LaplaceKernel(2), -1)

    bound_op = bind(qbx.copy(target_association_tolerance=0.5),
                    op.operator(sym.var('sigma')))
    rhs = bind(qbx.density_discr, op.prepare_rhs(sym.var("bc")))(queue,
                                                                 bc=bvals)

    from pytential.solve import gmres
    gmres_result = gmres(bound_op.scipy_op(queue, "sigma", dtype=np.float64),
                         rhs,
                         tol=1e-12,
                         progress=True,
                         hard_failure=True,
                         stall_iterations=50,
                         no_progress_factor=1.05)

    from sumpy.visualization import FieldPlotter
    from pytential.target import PointsTarget
    pltsize = b * 1.5
    fplot = FieldPlotter(np.array([-1 + pltsize * 0.5, 0]),
                         extent=pltsize * 1.05,
                         npoints=500)
    plt_targets = cl.array.to_device(queue, fplot.points)

    interior_pts = (fplot.points[0]**2 / a**2 +
                    fplot.points[1]**2 / b**2) < 0.99

    exact_vals = reference_solu(fplot.points)
    out_errs = []

    for assotol in [0.05]:

        qbx_stick_out = qbx.copy(target_association_tolerance=0.05)

        vol_solution = bind((qbx_stick_out, PointsTarget(plt_targets)),
                            op.representation(sym.var('sigma')))(
                                queue, sigma=gmres_result.solution).get()

        interior_error_linf = (
            np.linalg.norm(np.abs(vol_solution - exact_vals)[interior_pts],
                           ord=np.inf) /
            np.linalg.norm(exact_vals[interior_pts], ord=np.inf))

        interior_error_l2 = (np.linalg.norm(
            np.abs(vol_solution - exact_vals)[interior_pts], ord=2) /
                             np.linalg.norm(exact_vals[interior_pts], ord=2))

        print("\nassotol = %f" % assotol)
        print("L_inf Error = %e " % interior_error_linf)
        print("L_2 Error = %e " % interior_error_l2)

        out_errs.append(
            ("error-%f" % assotol, np.abs(vol_solution - exact_vals)))

    if 1:
        fplot.write_vtk_file("results.vts", out_errs)
def main():
    logging.basicConfig(level=logging.INFO)

    nelements = 60
    qbx_order = 3
    k_fac = 4
    k0 = 3*k_fac
    k1 = 2.9*k_fac
    mesh_order = 10
    bdry_quad_order = mesh_order
    bdry_ovsmp_quad_order = bdry_quad_order * 4
    fmm_order = qbx_order * 2

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    from meshmode.mesh.generation import ellipse, make_curve_mesh
    from functools import partial
    mesh = make_curve_mesh(
            partial(ellipse, 3),
            np.linspace(0, 1, nelements+1),
            mesh_order)

    density_discr = Discretization(
            cl_ctx, mesh,
            InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order))

    logger.info("%d elements" % mesh.nelements)

    # from meshmode.discretization.visualization import make_visualizer
    # bdry_vis = make_visualizer(queue, density_discr, 20)

    # {{{ solve bvp

    from sumpy.kernel import HelmholtzKernel
    kernel = HelmholtzKernel(2)

    beta = 2.5*k_fac
    K0 = np.sqrt(k0**2-beta**2)
    K1 = np.sqrt(k1**2-beta**2)

    from pytential.symbolic.pde.scalar import DielectricSDRep2DBoundaryOperator
    pde_op = DielectricSDRep2DBoundaryOperator(
            mode='tm',
            k_vacuum=1,
            interfaces=((0, 1, sym.DEFAULT_SOURCE),),
            domain_k_exprs=(k0, k1),
            beta=beta)

    op_unknown_sym = pde_op.make_unknown("unknown")

    representation0_sym = pde_op.representation(op_unknown_sym, 0)
    representation1_sym = pde_op.representation(op_unknown_sym, 1)

    from pytential.qbx import QBXLayerPotentialSource
    qbx = QBXLayerPotentialSource(
            density_discr, fine_order=bdry_ovsmp_quad_order, qbx_order=qbx_order,
            fmm_order=fmm_order
            )

    bound_pde_op = bind(qbx, pde_op.operator(op_unknown_sym))

    # in inner domain
    sources_1 = make_obj_array(list(np.array([
        [-1.5, 0.5]
        ]).T.copy()))
    strengths_1 = np.array([1])

    from sumpy.p2p import P2P
    pot_p2p = P2P(cl_ctx, [kernel], exclude_self=False)

    _, (Einc,) = pot_p2p(queue, density_discr.nodes(), sources_1, [strengths_1],
                    out_host=False, k=K0)

    sqrt_w = bind(density_discr, sym.sqrt_jac_q_weight())(queue)

    bvp_rhs = np.zeros(len(pde_op.bcs), dtype=np.object)
    for i_bc, terms in enumerate(pde_op.bcs):
        for term in terms:
            assert term.i_interface == 0
            assert term.field_kind == pde_op.field_kind_e

            if term.direction == pde_op.dir_none:
                bvp_rhs[i_bc] += (
                        term.coeff_outer * (-Einc)
                        )
            elif term.direction == pde_op.dir_normal:
                # no jump in normal derivative
                bvp_rhs[i_bc] += 0*Einc
            else:
                raise NotImplementedError("direction spec in RHS")

        bvp_rhs[i_bc] *= sqrt_w

    from pytential.solve import gmres
    gmres_result = gmres(
            bound_pde_op.scipy_op(queue, "unknown", dtype=np.complex128,
                domains=[sym.DEFAULT_TARGET]*2, K0=K0, K1=K1),
            bvp_rhs, tol=1e-6, progress=True,
            hard_failure=True, stall_iterations=0)

    # }}}

    unknown = gmres_result.solution

    # {{{ visualize

    from pytential.qbx import QBXLayerPotentialSource
    lap_qbx = QBXLayerPotentialSource(
            density_discr, fine_order=bdry_ovsmp_quad_order, qbx_order=qbx_order,
            fmm_order=qbx_order
            )

    from sumpy.visualization import FieldPlotter
    fplot = FieldPlotter(np.zeros(2), extent=5, npoints=300)
    from pytential.target import PointsTarget
    fld0 = bind(
            (qbx, PointsTarget(fplot.points)),
            representation0_sym)(queue, unknown=unknown, K0=K0).get()
    fld1 = bind(
            (qbx, PointsTarget(fplot.points)),
            representation1_sym)(queue, unknown=unknown, K1=K1).get()
    ones = cl.array.empty(queue, density_discr.nnodes, np.float64)
    dom1_indicator = -bind(
            (lap_qbx, PointsTarget(fplot.points)),
            sym.D(0, sym.var("sigma")))(
                    queue, sigma=ones.fill(1)).get()
    _, (fld_inc_vol,) = pot_p2p(queue, fplot.points, sources_1, [strengths_1],
                    out_host=True, k=K0)

    #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
    fplot.write_vtk_file(
            "potential.vts",
            [
                ("fld0", fld0),
                ("fld1", fld1),
                ("fld_inc_vol", fld_inc_vol),
                ("fld_total", (
                    (fld_inc_vol + fld0)*(1-dom1_indicator)
                    +
                    fld1*dom1_indicator
                    )),
                ("dom1_indicator", dom1_indicator),
                ]
            )
Beispiel #13
0
def main():
    # cl.array.to_device(queue, numpy_array)
    from meshmode.mesh.io import generate_gmsh, FileSource
    mesh = generate_gmsh(
        FileSource("ellipsoid.step"),
        2,
        order=2,
        other_options=["-string",
                       "Mesh.CharacteristicLengthMax = %g;" % h])

    from meshmode.mesh.processing import perform_flips
    # Flip elements--gmsh generates inside-out geometry.
    mesh = perform_flips(mesh, np.ones(mesh.nelements))

    print("%d elements" % mesh.nelements)

    from meshmode.mesh.processing import find_bounding_box
    bbox_min, bbox_max = find_bounding_box(mesh)
    bbox_center = 0.5 * (bbox_min + bbox_max)
    bbox_size = max(bbox_max - bbox_min) / 2

    logger.info("%d elements" % mesh.nelements)

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory

    density_discr = Discretization(
        cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))

    qbx = QBXLayerPotentialSource(density_discr,
                                  4 * target_order,
                                  qbx_order,
                                  fmm_order=qbx_order + 10,
                                  fmm_backend="fmmlib")

    from pytential.symbolic.pde.maxwell import MuellerAugmentedMFIEOperator
    pde_op = MuellerAugmentedMFIEOperator(
        omega=0.4,
        epss=[1.4, 1.0],
        mus=[1.2, 1.0],
    )
    from pytential import bind, sym

    unk = pde_op.make_unknown("sigma")
    sym_operator = pde_op.operator(unk)
    sym_rhs = pde_op.rhs(sym.make_sym_vector("Einc", 3),
                         sym.make_sym_vector("Hinc", 3))
    sym_repr = pde_op.representation(0, unk)

    if 1:
        expr = sym_repr
        print(sym.pretty(expr))

        print("#" * 80)
        from pytential.target import PointsTarget

        tgt_points = np.zeros((3, 1))
        tgt_points[0, 0] = 100
        tgt_points[1, 0] = -200
        tgt_points[2, 0] = 300

        bound_op = bind((qbx, PointsTarget(tgt_points)), expr)
        print(bound_op.code)

    if 1:

        def green3e(x, y, z, source, strength, k):
            # electric field corresponding to dyadic green's function
            # due to monochromatic electric dipole located at "source".
            # "strength" is the the intensity of the dipole.
            #  E = (I + Hess)(exp(ikr)/r) dot (strength)
            #
            dx = x - source[0]
            dy = y - source[1]
            dz = z - source[2]
            rr = np.sqrt(dx**2 + dy**2 + dz**2)

            fout = np.exp(1j * k * rr) / rr
            evec = fout * strength
            qmat = np.zeros((3, 3), dtype=np.complex128)

            qmat[0, 0] = (2 * dx**2 - dy**2 - dz**2) * (1 - 1j * k * rr)
            qmat[1, 1] = (2 * dy**2 - dz**2 - dx**2) * (1 - 1j * k * rr)
            qmat[2, 2] = (2 * dz**2 - dx**2 - dy**2) * (1 - 1j * k * rr)

            qmat[0, 0] = qmat[0, 0] + (-k**2 * dx**2 * rr**2)
            qmat[1, 1] = qmat[1, 1] + (-k**2 * dy**2 * rr**2)
            qmat[2, 2] = qmat[2, 2] + (-k**2 * dz**2 * rr**2)

            qmat[0, 1] = (3 - k**2 * rr**2 - 3 * 1j * k * rr) * (dx * dy)
            qmat[1, 2] = (3 - k**2 * rr**2 - 3 * 1j * k * rr) * (dy * dz)
            qmat[2, 0] = (3 - k**2 * rr**2 - 3 * 1j * k * rr) * (dz * dx)

            qmat[1, 0] = qmat[0, 1]
            qmat[2, 1] = qmat[1, 2]
            qmat[0, 2] = qmat[2, 0]

            fout = np.exp(1j * k * rr) / rr**5 / k**2

            fvec = fout * np.dot(qmat, strength)
            evec = evec + fvec
            return evec

        def green3m(x, y, z, source, strength, k):
            # magnetic field corresponding to dyadic green's function
            # due to monochromatic electric dipole located at "source".
            # "strength" is the the intensity of the dipole.
            #  H = curl((I + Hess)(exp(ikr)/r) dot (strength)) =
            #  strength \cross \grad (exp(ikr)/r)
            #
            dx = x - source[0]
            dy = y - source[1]
            dz = z - source[2]
            rr = np.sqrt(dx**2 + dy**2 + dz**2)

            fout = (1 - 1j * k * rr) * np.exp(1j * k * rr) / rr**3
            fvec = np.zeros(3, dtype=np.complex128)
            fvec[0] = fout * dx
            fvec[1] = fout * dy
            fvec[2] = fout * dz

            hvec = np.cross(strength, fvec)

            return hvec

        def dipole3e(x, y, z, source, strength, k):
            #
            #  evalaute electric and magnetic field due
            #  to monochromatic electric dipole located at "source"
            #  with intensity "strength"

            evec = green3e(x, y, z, source, strength, k)
            evec = evec * 1j * k
            hvec = green3m(x, y, z, source, strength, k)
            return evec, hvec

        def dipole3m(x, y, z, source, strength, k):
            #
            #  evalaute electric and magnetic field due
            #  to monochromatic magnetic dipole located at "source"
            #  with intensity "strength"
            evec = green3m(x, y, z, source, strength, k)
            hvec = green3e(x, y, z, source, strength, k)
            hvec = -hvec * 1j * k
            return evec, hvec

        def dipole3eall(x, y, z, sources, strengths, k):
            ns = len(strengths)
            evec = np.zeros(3, dtype=np.complex128)
            hvec = np.zeros(3, dtype=np.complex128)

            for i in range(ns):
                evect, hvect = dipole3e(x, y, z, sources[i], strengths[i], k)
                evec = evec + evect
                hvec = hvec + hvect

        nodes = density_discr.nodes().with_queue(queue).get()
        source = [0.01, -0.03, 0.02]
        #        source = cl.array.to_device(queue,np.zeros(3))
        #        source[0] = 0.01
        #        source[1] =-0.03
        #        source[2] = 0.02
        strength = np.ones(3)

        #        evec = cl.array.to_device(queue,np.zeros((3,len(nodes[0])),dtype=np.complex128))
        #        hvec = cl.array.to_device(queue,np.zeros((3,len(nodes[0])),dtype=np.complex128))

        evec = np.zeros((3, len(nodes[0])), dtype=np.complex128)
        hvec = np.zeros((3, len(nodes[0])), dtype=np.complex128)
        for i in range(len(nodes[0])):
            evec[:, i], hvec[:, i] = dipole3e(nodes[0][i], nodes[1][i],
                                              nodes[2][i], source, strength, k)
        print(np.shape(hvec))
        print(type(evec))
        print(type(hvec))

        evec = cl.array.to_device(queue, evec)
        hvec = cl.array.to_device(queue, hvec)

        bvp_rhs = bind(qbx, sym_rhs)(queue, Einc=evec, Hinc=hvec)
        print(np.shape(bvp_rhs))
        print(type(bvp_rhs))
        #        print(bvp_rhs)
        1 / -1

        bound_op = bind(qbx, sym_operator)

        from pytential.solve import gmres
        if 0:
            gmres_result = gmres(bound_op.scipy_op(queue,
                                                   "sigma",
                                                   dtype=np.complex128,
                                                   k=k),
                                 bvp_rhs,
                                 tol=1e-8,
                                 progress=True,
                                 stall_iterations=0,
                                 hard_failure=True)

            sigma = gmres_result.solution

        fld_at_tgt = bind((qbx, PointsTarget(tgt_points)),
                          sym_repr)(queue, sigma=bvp_rhs, k=k)
        fld_at_tgt = np.array([fi.get() for fi in fld_at_tgt])
        print(fld_at_tgt)
        1 / 0

    # }}}

    #mlab.figure(bgcolor=(1, 1, 1))
    if 1:
        from meshmode.discretization.visualization import make_visualizer
        bdry_vis = make_visualizer(queue, density_discr, target_order)

        bdry_normals = bind(density_discr, sym.normal(3))(queue)\
                .as_vector(dtype=object)

        bdry_vis.write_vtk_file("source.vtu", [
            ("sigma", sigma),
            ("bdry_normals", bdry_normals),
        ])

        fplot = FieldPlotter(bbox_center,
                             extent=2 * bbox_size,
                             npoints=(150, 150, 1))

        qbx_tgt_tol = qbx.copy(target_association_tolerance=0.1)
        from pytential.target import PointsTarget
        from pytential.qbx import QBXTargetAssociationFailedException

        rho_sym = sym.var("rho")

        try:
            fld_in_vol = bind((qbx_tgt_tol, PointsTarget(fplot.points)),
                              sym.make_obj_array([
                                  sym.S(pde_op.kernel,
                                        rho_sym,
                                        k=sym.var("k"),
                                        qbx_forced_limit=None),
                                  sym.d_dx(
                                      3,
                                      sym.S(pde_op.kernel,
                                            rho_sym,
                                            k=sym.var("k"),
                                            qbx_forced_limit=None)),
                                  sym.d_dy(
                                      3,
                                      sym.S(pde_op.kernel,
                                            rho_sym,
                                            k=sym.var("k"),
                                            qbx_forced_limit=None)),
                                  sym.d_dz(
                                      3,
                                      sym.S(pde_op.kernel,
                                            rho_sym,
                                            k=sym.var("k"),
                                            qbx_forced_limit=None)),
                              ]))(queue, jt=jt, rho=rho, k=k)
        except QBXTargetAssociationFailedException as e:
            fplot.write_vtk_file(
                "failed-targets.vts",
                [("failed_targets", e.failed_target_flags.get(queue))])
            raise

        fld_in_vol = sym.make_obj_array([fiv.get() for fiv in fld_in_vol])

        #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
        fplot.write_vtk_file("potential.vts", [
            ("potential", fld_in_vol[0]),
            ("grad", fld_in_vol[1:]),
        ])
Beispiel #14
0
def main():
    import logging
    logging.basicConfig(level=logging.WARNING)  # INFO for more progress info

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    target_order = 16
    qbx_order = 3
    nelements = 60
    mode_nr = 0

    k = 0
    if k:
        kernel = HelmholtzKernel(2)
    else:
        kernel = LaplaceKernel(2)

    mesh = make_curve_mesh(
        #lambda t: ellipse(1, t),
        starfish,
        np.linspace(0, 1, nelements + 1),
        target_order)

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory

    pre_density_discr = Discretization(
        actx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))

    unaccel_qbx = QBXLayerPotentialSource(
        pre_density_discr,
        fine_order=2 * target_order,
        qbx_order=qbx_order,
        fmm_order=False,
        target_association_tolerance=.05,
    )

    from pytential.target import PointsTarget
    fplot = FieldPlotter(np.zeros(2), extent=5, npoints=600)

    from pytential import GeometryCollection
    places = GeometryCollection({
        "unaccel_qbx": unaccel_qbx,
        "qbx": unaccel_qbx.copy(fmm_order=10),
        "targets": PointsTarget(fplot.points)
    })
    density_discr = places.get_discretization("unaccel_qbx")

    nodes = thaw(actx, density_discr.nodes())
    angle = actx.np.arctan2(nodes[1], nodes[0])

    from pytential import bind, sym
    if k:
        kernel_kwargs = {"k": sym.var("k")}
    else:
        kernel_kwargs = {}

    def get_op():
        kwargs = dict(qbx_forced_limit=None)
        kwargs.update(kernel_kwargs)
        # return sym.d_dx(2, sym.S(kernel, sym.var("sigma"), **kwargs))
        # return sym.D(kernel, sym.var("sigma"), **kwargs)
        return sym.S(kernel, sym.var("sigma"), **kwargs)

    op = get_op()

    sigma = actx.np.cos(mode_nr * angle)

    if isinstance(kernel, HelmholtzKernel):
        for i, elem in np.ndenumerate(sigma):
            sigma[i] = elem.astype(np.complex128)

    fld_in_vol = bind(places, op,
                      auto_where=("unaccel_qbx", "targets"))(actx,
                                                             sigma=sigma,
                                                             k=k).get()

    fmm_fld_in_vol = bind(places, op,
                          auto_where=("qbx", "targets"))(actx,
                                                         sigma=sigma,
                                                         k=k).get()

    err = fmm_fld_in_vol - fld_in_vol

    try:
        import matplotlib
    except ImportError:
        return

    matplotlib.use("Agg")
    im = fplot.show_scalar_in_matplotlib(np.log10(np.abs(err) + 1e-17))

    from matplotlib.colors import Normalize
    im.set_norm(Normalize(vmin=-12, vmax=0))

    import matplotlib.pyplot as pt
    from matplotlib.ticker import NullFormatter
    pt.gca().xaxis.set_major_formatter(NullFormatter())
    pt.gca().yaxis.set_major_formatter(NullFormatter())

    cb = pt.colorbar(shrink=0.9)
    cb.set_label(r"$\log_{10}(\mathrm{Error})$")

    pt.savefig("fmm-error-order-%d.pdf" % qbx_order)
Beispiel #15
0
angle = cl.clmath.atan2(nodes[1], nodes[0])

from pytential import bind, sym
d = sym.Derivative()
#op = d.nabla[0] * d(sym.S(kernel, sym.var("sigma")))
#op = sym.D(kernel, sym.var("sigma"))
op = sym.S(kernel, sym.var("sigma"))

sigma = cl.clmath.cos(mode_nr*angle)

if isinstance(kernel, HelmholtzKernel):
    sigma = sigma.astype(np.complex128)

bound_bdry_op = bind(qbx, op)

fplot = FieldPlotter(np.zeros(2), extent=5, npoints=600)
from pytential.target import PointsTarget

fld_in_vol = bind(
        (slow_qbx, PointsTarget(fplot.points)),
        op)(queue, sigma=sigma, k=k).get()

fmm_fld_in_vol = bind(
        (qbx, PointsTarget(fplot.points)),
        op)(queue, sigma=sigma, k=k).get()

err = fmm_fld_in_vol-fld_in_vol
im = fplot.show_scalar_in_matplotlib(np.log10(np.abs(err)))

from matplotlib.colors import Normalize
im.set_norm(Normalize(vmin=-6, vmax=0))
Beispiel #16
0
def main(mesh_name="torus", visualize=False):
    import logging
    logging.basicConfig(level=logging.WARNING)  # INFO for more progress info

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    if mesh_name == "torus":
        rout = 10
        rin = 1

        from meshmode.mesh.generation import generate_torus
        base_mesh = generate_torus(
                rout, rin, 40, 4,
                mesh_order)

        from meshmode.mesh.processing import affine_map, merge_disjoint_meshes
        # nx = 1
        # ny = 1
        nz = 1
        dz = 0
        meshes = [
                affine_map(
                    base_mesh,
                    A=np.diag([1, 1, 1]),
                    b=np.array([0, 0, iz*dz]))
                for iz in range(nz)]

        mesh = merge_disjoint_meshes(meshes, single_group=True)

        if visualize:
            from meshmode.mesh.visualization import draw_curve
            draw_curve(mesh)
            import matplotlib.pyplot as plt
            plt.show()
    else:
        raise ValueError(f"unknown mesh name: {mesh_name}")

    pre_density_discr = Discretization(
            actx, mesh,
            InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order))

    from pytential.qbx import (
            QBXLayerPotentialSource, QBXTargetAssociationFailedException)
    qbx = QBXLayerPotentialSource(
            pre_density_discr, fine_order=bdry_ovsmp_quad_order, qbx_order=qbx_order,
            fmm_order=fmm_order,
            )

    from sumpy.visualization import FieldPlotter
    fplot = FieldPlotter(np.zeros(3), extent=20, npoints=50)
    targets = actx.from_numpy(fplot.points)

    from pytential import GeometryCollection
    places = GeometryCollection({
        "qbx": qbx,
        "qbx_target_assoc": qbx.copy(target_association_tolerance=0.2),
        "targets": PointsTarget(targets)
        }, auto_where="qbx")
    density_discr = places.get_discretization("qbx")

    # {{{ describe bvp

    from sumpy.kernel import LaplaceKernel
    kernel = LaplaceKernel(3)

    sigma_sym = sym.var("sigma")
    #sqrt_w = sym.sqrt_jac_q_weight(3)
    sqrt_w = 1
    inv_sqrt_w_sigma = sym.cse(sigma_sym/sqrt_w)

    # -1 for interior Dirichlet
    # +1 for exterior Dirichlet
    loc_sign = +1

    bdry_op_sym = (loc_sign*0.5*sigma_sym
            + sqrt_w*(
                sym.S(kernel, inv_sqrt_w_sigma, qbx_forced_limit=+1)
                + sym.D(kernel, inv_sqrt_w_sigma, qbx_forced_limit="avg")
                ))

    # }}}

    bound_op = bind(places, bdry_op_sym)

    # {{{ fix rhs and solve

    from meshmode.dof_array import thaw, flatten, unflatten
    nodes = thaw(actx, density_discr.nodes())
    source = np.array([rout, 0, 0])

    def u_incoming_func(x):
        from pytools.obj_array import obj_array_vectorize
        x = obj_array_vectorize(actx.to_numpy, flatten(x))
        x = np.array(list(x))
        #        return 1/cl.clmath.sqrt( (x[0] - source[0])**2
        #                                +(x[1] - source[1])**2
        #                                +(x[2] - source[2])**2 )
        return 1.0/la.norm(x - source[:, None], axis=0)

    bc = unflatten(actx,
            density_discr,
            actx.from_numpy(u_incoming_func(nodes)))

    bvp_rhs = bind(places, sqrt_w*sym.var("bc"))(actx, bc=bc)

    from pytential.solve import gmres
    gmres_result = gmres(
            bound_op.scipy_op(actx, "sigma", dtype=np.float64),
            bvp_rhs, tol=1e-14, progress=True,
            stall_iterations=0,
            hard_failure=True)

    sigma = bind(places, sym.var("sigma")/sqrt_w)(
            actx, sigma=gmres_result.solution)

    # }}}

    from meshmode.discretization.visualization import make_visualizer
    bdry_vis = make_visualizer(actx, density_discr, 20)
    bdry_vis.write_vtk_file("laplace.vtu", [
        ("sigma", sigma),
        ])

    # {{{ postprocess/visualize

    repr_kwargs = dict(
            source="qbx_target_assoc",
            target="targets",
            qbx_forced_limit=None)
    representation_sym = (
            sym.S(kernel, inv_sqrt_w_sigma, **repr_kwargs)
            + sym.D(kernel, inv_sqrt_w_sigma, **repr_kwargs))

    try:
        fld_in_vol = actx.to_numpy(
                bind(places, representation_sym)(actx, sigma=sigma))
    except QBXTargetAssociationFailedException as e:
        fplot.write_vtk_file("laplace-dirichlet-3d-failed-targets.vts", [
            ("failed", e.failed_target_flags.get(queue)),
            ])
        raise

    #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
    fplot.write_vtk_file("laplace-dirichlet-3d-potential.vts", [
        ("potential", fld_in_vol),
        ])
Beispiel #17
0
def timing_run(nx, ny):
    import logging
    logging.basicConfig(level=logging.WARNING)  # INFO for more progress info

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    mesh = make_mesh(nx=nx, ny=ny)

    density_discr = Discretization(
        cl_ctx, mesh,
        InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order))

    from pytential.qbx import (QBXLayerPotentialSource,
                               QBXTargetAssociationFailedException)
    qbx = QBXLayerPotentialSource(density_discr,
                                  fine_order=bdry_ovsmp_quad_order,
                                  qbx_order=qbx_order,
                                  fmm_order=fmm_order)

    # {{{ describe bvp

    from sumpy.kernel import HelmholtzKernel
    kernel = HelmholtzKernel(2)

    cse = sym.cse

    sigma_sym = sym.var("sigma")
    sqrt_w = sym.sqrt_jac_q_weight(2)
    inv_sqrt_w_sigma = cse(sigma_sym / sqrt_w)

    # Brakhage-Werner parameter
    alpha = 1j

    # -1 for interior Dirichlet
    # +1 for exterior Dirichlet
    loc_sign = +1

    bdry_op_sym = (-loc_sign * 0.5 * sigma_sym + sqrt_w *
                   (alpha * sym.S(kernel, inv_sqrt_w_sigma, k=sym.var("k")) -
                    sym.D(kernel, inv_sqrt_w_sigma, k=sym.var("k"))))

    # }}}

    bound_op = bind(qbx, bdry_op_sym)

    # {{{ fix rhs and solve

    mode_nr = 3
    nodes = density_discr.nodes().with_queue(queue)
    angle = cl.clmath.atan2(nodes[1], nodes[0])

    sigma = cl.clmath.cos(mode_nr * angle)

    # }}}

    # {{{ postprocess/visualize

    repr_kwargs = dict(k=sym.var("k"), qbx_forced_limit=+1)

    sym_op = sym.S(kernel, sym.var("sigma"), **repr_kwargs)
    bound_op = bind(qbx, sym_op)

    print("FMM WARM-UP RUN 1: %d elements" % mesh.nelements)
    bound_op(queue, sigma=sigma, k=k)
    print("FMM WARM-UP RUN 2: %d elements" % mesh.nelements)
    bound_op(queue, sigma=sigma, k=k)
    queue.finish()
    print("FMM TIMING RUN: %d elements" % mesh.nelements)

    from time import time
    t_start = time()

    bound_op(queue, sigma=sigma, k=k)
    queue.finish()
    elapsed = time() - t_start

    print("FMM TIMING RUN DONE: %d elements -> %g s" %
          (mesh.nelements, elapsed))

    return (mesh.nelements, elapsed)

    if 0:
        from sumpy.visualization import FieldPlotter
        fplot = FieldPlotter(np.zeros(2), extent=5, npoints=1500)

        targets = cl.array.to_device(queue, fplot.points)

        qbx_tgt_tol = qbx.copy(target_association_tolerance=0.05)

        indicator_qbx = qbx_tgt_tol.copy(fmm_level_to_order=lambda lev: 7,
                                         qbx_order=2)

        ones_density = density_discr.zeros(queue)
        ones_density.fill(1)
        indicator = bind((indicator_qbx, PointsTarget(targets)),
                         sym_op)(queue, sigma=ones_density).get()

        qbx_stick_out = qbx.copy(target_stick_out_factor=0.1)
        try:
            fld_in_vol = bind((qbx_stick_out, PointsTarget(targets)),
                              sym_op)(queue, sigma=sigma, k=k).get()
        except QBXTargetAssociationFailedException as e:
            fplot.write_vtk_file(
                "failed-targets.vts",
                [("failed", e.failed_target_flags.get(queue))])
            raise

        #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
        fplot.write_vtk_file("potential-scaling.vts",
                             [("potential", fld_in_vol),
                              ("indicator", indicator)])
Beispiel #18
0
def main():
    import logging
    logging.basicConfig(level=logging.WARNING)  # INFO for more progress info

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    target_order = 16
    qbx_order = 3
    nelements = 60
    mode_nr = 0

    k = 0
    if k:
        kernel = HelmholtzKernel(2)
    else:
        kernel = LaplaceKernel(2)
    #kernel = OneKernel()

    mesh = make_curve_mesh(
        #lambda t: ellipse(1, t),
        starfish,
        np.linspace(0, 1, nelements + 1),
        target_order)

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory

    pre_density_discr = Discretization(
        cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))

    slow_qbx, _ = QBXLayerPotentialSource(
        pre_density_discr,
        fine_order=2 * target_order,
        qbx_order=qbx_order,
        fmm_order=False,
        target_association_tolerance=.05).with_refinement()
    qbx = slow_qbx.copy(fmm_order=10)
    density_discr = slow_qbx.density_discr

    nodes = density_discr.nodes().with_queue(queue)

    angle = cl.clmath.atan2(nodes[1], nodes[0])

    from pytential import bind, sym
    #op = sym.d_dx(sym.S(kernel, sym.var("sigma")), qbx_forced_limit=None)
    #op = sym.D(kernel, sym.var("sigma"), qbx_forced_limit=None)
    op = sym.S(kernel, sym.var("sigma"), qbx_forced_limit=None)

    sigma = cl.clmath.cos(mode_nr * angle)

    if isinstance(kernel, HelmholtzKernel):
        sigma = sigma.astype(np.complex128)

    fplot = FieldPlotter(np.zeros(2), extent=5, npoints=600)
    from pytential.target import PointsTarget

    fld_in_vol = bind((slow_qbx, PointsTarget(fplot.points)), op)(queue,
                                                                  sigma=sigma,
                                                                  k=k).get()

    fmm_fld_in_vol = bind((qbx, PointsTarget(fplot.points)), op)(queue,
                                                                 sigma=sigma,
                                                                 k=k).get()

    err = fmm_fld_in_vol - fld_in_vol

    import matplotlib
    matplotlib.use('Agg')
    im = fplot.show_scalar_in_matplotlib(np.log10(np.abs(err) + 1e-17))

    from matplotlib.colors import Normalize
    im.set_norm(Normalize(vmin=-12, vmax=0))

    import matplotlib.pyplot as pt
    from matplotlib.ticker import NullFormatter
    pt.gca().xaxis.set_major_formatter(NullFormatter())
    pt.gca().yaxis.set_major_formatter(NullFormatter())

    cb = pt.colorbar(shrink=0.9)
    cb.set_label(r"$\log_{10}(\mathdefault{Error})$")

    pt.savefig("fmm-error-order-%d.pdf" % qbx_order)
Beispiel #19
0
def main():
    import logging
    logging.basicConfig(level=logging.WARNING)  # INFO for more progress info

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    target_order = 16
    qbx_order = 3
    nelements = 60
    mode_nr = 0

    k = 0
    if k:
        kernel = HelmholtzKernel(2)
    else:
        kernel = LaplaceKernel(2)
    #kernel = OneKernel()

    mesh = make_curve_mesh(
            #lambda t: ellipse(1, t),
            starfish,
            np.linspace(0, 1, nelements+1),
            target_order)

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory

    pre_density_discr = Discretization(
            cl_ctx, mesh,
            InterpolatoryQuadratureSimplexGroupFactory(target_order))

    slow_qbx, _ = QBXLayerPotentialSource(
            pre_density_discr, fine_order=2*target_order,
            qbx_order=qbx_order, fmm_order=False,
            target_association_tolerance=.05
            ).with_refinement()
    qbx = slow_qbx.copy(fmm_order=10)
    density_discr = slow_qbx.density_discr

    nodes = density_discr.nodes().with_queue(queue)

    angle = cl.clmath.atan2(nodes[1], nodes[0])

    from pytential import bind, sym
    #op = sym.d_dx(sym.S(kernel, sym.var("sigma")), qbx_forced_limit=None)
    #op = sym.D(kernel, sym.var("sigma"), qbx_forced_limit=None)
    op = sym.S(kernel, sym.var("sigma"), qbx_forced_limit=None)

    sigma = cl.clmath.cos(mode_nr*angle)

    if isinstance(kernel, HelmholtzKernel):
        sigma = sigma.astype(np.complex128)

    fplot = FieldPlotter(np.zeros(2), extent=5, npoints=600)
    from pytential.target import PointsTarget

    fld_in_vol = bind(
            (slow_qbx, PointsTarget(fplot.points)),
            op)(queue, sigma=sigma, k=k).get()

    fmm_fld_in_vol = bind(
            (qbx, PointsTarget(fplot.points)),
            op)(queue, sigma=sigma, k=k).get()

    err = fmm_fld_in_vol-fld_in_vol

    import matplotlib
    matplotlib.use('Agg')
    im = fplot.show_scalar_in_matplotlib(np.log10(np.abs(err) + 1e-17))

    from matplotlib.colors import Normalize
    im.set_norm(Normalize(vmin=-12, vmax=0))

    import matplotlib.pyplot as pt
    from matplotlib.ticker import NullFormatter
    pt.gca().xaxis.set_major_formatter(NullFormatter())
    pt.gca().yaxis.set_major_formatter(NullFormatter())

    cb = pt.colorbar(shrink=0.9)
    cb.set_label(r"$\log_{10}(\mathdefault{Error})$")

    pt.savefig("fmm-error-order-%d.pdf" % qbx_order)
def main():
    import logging
    logging.basicConfig(level=logging.INFO)

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    from meshmode.mesh.generation import ellipse, make_curve_mesh
    from functools import partial

    mesh = make_curve_mesh(
            partial(ellipse, 3),
            np.linspace(0, 1, nelements+1),
            mesh_order)

    density_discr = Discretization(
            cl_ctx, mesh,
            InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order))

    from pytential.qbx import QBXLayerPotentialSource
    qbx = QBXLayerPotentialSource(
            density_discr, fine_order=bdry_ovsmp_quad_order, qbx_order=qbx_order,
            fmm_order=fmm_order
            )

    # {{{ describe bvp

    from sumpy.kernel import HelmholtzKernel
    kernel = HelmholtzKernel(2)

    cse = sym.cse

    sigma_sym = sym.var("sigma")
    sqrt_w = sym.sqrt_jac_q_weight()
    inv_sqrt_w_sigma = cse(sigma_sym/sqrt_w)

    # Brakhage-Werner parameter
    alpha = 1j

    # -1 for interior Dirichlet
    # +1 for exterior Dirichlet
    loc_sign = -1

    bdry_op_sym = (-loc_sign*0.5*sigma_sym
            + sqrt_w*(
                alpha*sym.S(kernel, inv_sqrt_w_sigma, k=sym.var("k"))
                - sym.D(kernel, inv_sqrt_w_sigma, k=sym.var("k"))
                ))

    # }}}

    bound_op = bind(qbx, bdry_op_sym)

    # {{{ fix rhs and solve

    mode_nr = 3
    nodes = density_discr.nodes().with_queue(queue)
    angle = cl.clmath.atan2(nodes[1], nodes[0])

    bc = cl.clmath.cos(mode_nr*angle)

    bvp_rhs = bind(qbx, sqrt_w*sym.var("bc"))(queue, bc=bc)

    from pytential.solve import gmres
    gmres_result = gmres(
            bound_op.scipy_op(queue, "sigma", k=k),
            bvp_rhs, tol=1e-14, progress=True,
            stall_iterations=0,
            hard_failure=True)

    # }}}

    # {{{ postprocess/visualize

    sigma = gmres_result.solution

    representation_sym = (
            alpha*sym.S(kernel, inv_sqrt_w_sigma, k=sym.var("k"))
            - sym.D(kernel, inv_sqrt_w_sigma, k=sym.var("k")))

    from sumpy.visualization import FieldPlotter
    fplot = FieldPlotter(np.zeros(2), extent=5, npoints=1500)
    from pytential.target import PointsTarget
    fld_in_vol = bind(
            (qbx, PointsTarget(fplot.points)),
            representation_sym)(queue, sigma=sigma, k=k).get()

    #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
    fplot.write_vtk_file(
            "potential.vts",
            [
                ("potential", fld_in_vol)
                ]
            )
Beispiel #21
0
def main():
    import logging
    logging.basicConfig(level=logging.INFO)

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    from meshmode.mesh.generation import ellipse, make_curve_mesh
    from functools import partial

    mesh = make_curve_mesh(
                partial(ellipse, 2),
                np.linspace(0, 1, nelements+1),
                mesh_order)

    pre_density_discr = Discretization(
            cl_ctx, mesh,
            InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order))

    from pytential.qbx import (
            QBXLayerPotentialSource, QBXTargetAssociationFailedException)
    qbx, _ = QBXLayerPotentialSource(
            pre_density_discr, fine_order=bdry_ovsmp_quad_order, qbx_order=qbx_order,
            fmm_order=fmm_order,
            expansion_disks_in_tree_have_extent=True,
            ).with_refinement()
    density_discr = qbx.density_discr

    from pytential.symbolic.pde.cahn_hilliard import CahnHilliardOperator
    chop = CahnHilliardOperator(
            # FIXME: Constants?
            lambda1=1.5,
            lambda2=1.25,
            c=1)

    unk = chop.make_unknown("sigma")
    bound_op = bind(qbx, chop.operator(unk))

    # {{{ fix rhs and solve

    nodes = density_discr.nodes().with_queue(queue)

    def g(xvec):
        x, y = xvec
        return cl.clmath.atan2(y, x)

    bc = sym.make_obj_array([
        # FIXME: Realistic BC
        g(nodes),
        -g(nodes),
        ])

    from pytential.solve import gmres
    gmres_result = gmres(
            bound_op.scipy_op(queue, "sigma", dtype=np.complex128),
            bc, tol=1e-8, progress=True,
            stall_iterations=0,
            hard_failure=True)

    # }}}

    # {{{ postprocess/visualize

    sigma = gmres_result.solution

    from sumpy.visualization import FieldPlotter
    fplot = FieldPlotter(np.zeros(2), extent=5, npoints=500)

    targets = cl.array.to_device(queue, fplot.points)

    qbx_stick_out = qbx.copy(target_association_tolerance=0.05)

    indicator_qbx = qbx_stick_out.copy(qbx_order=2)

    from sumpy.kernel import LaplaceKernel
    ones_density = density_discr.zeros(queue)
    ones_density.fill(1)
    indicator = bind(
            (indicator_qbx, PointsTarget(targets)),
            sym.D(LaplaceKernel(2), sym.var("sigma")))(
            queue, sigma=ones_density).get()

    try:
        fld_in_vol = bind(
                (qbx_stick_out, PointsTarget(targets)),
                chop.representation(unk))(queue, sigma=sigma).get()
    except QBXTargetAssociationFailedException as e:
        fplot.write_vtk_file(
                "failed-targets.vts",
                [
                    ("failed", e.failed_target_flags.get(queue))
                    ]
                )
        raise

    #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
    fplot.write_vtk_file(
            "potential.vts",
            [
                ("potential", fld_in_vol),
                ("indicator", indicator),
                ]
            )
def main():
    import logging
    logging.basicConfig(level=logging.WARNING)  # INFO for more progress info

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    from meshmode.mesh.generation import generate_torus

    rout = 10
    rin = 1
    if 1:
        base_mesh = generate_torus(
                rout, rin, 40, 4,
                mesh_order)

        from meshmode.mesh.processing import affine_map, merge_disjoint_meshes
        # nx = 1
        # ny = 1
        nz = 1
        dz = 0
        meshes = [
                affine_map(
                    base_mesh,
                    A=np.diag([1, 1, 1]),
                    b=np.array([0, 0, iz*dz]))
                for iz in range(nz)]

        mesh = merge_disjoint_meshes(meshes, single_group=True)

        if 0:
            from meshmode.mesh.visualization import draw_curve
            draw_curve(mesh)
            import matplotlib.pyplot as plt
            plt.show()

    pre_density_discr = Discretization(
            cl_ctx, mesh,
            InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order))

    from pytential.qbx import (
            QBXLayerPotentialSource, QBXTargetAssociationFailedException)
    qbx, _ = QBXLayerPotentialSource(
            pre_density_discr, fine_order=bdry_ovsmp_quad_order, qbx_order=qbx_order,
            fmm_order=fmm_order
            ).with_refinement()
    density_discr = qbx.density_discr

    # {{{ describe bvp

    from sumpy.kernel import LaplaceKernel
    kernel = LaplaceKernel(3)

    cse = sym.cse

    sigma_sym = sym.var("sigma")
    #sqrt_w = sym.sqrt_jac_q_weight(3)
    sqrt_w = 1
    inv_sqrt_w_sigma = cse(sigma_sym/sqrt_w)

    # -1 for interior Dirichlet
    # +1 for exterior Dirichlet
    loc_sign = +1

    bdry_op_sym = (loc_sign*0.5*sigma_sym
            + sqrt_w*(
                sym.S(kernel, inv_sqrt_w_sigma)
                + sym.D(kernel, inv_sqrt_w_sigma)
                ))

    # }}}

    bound_op = bind(qbx, bdry_op_sym)

    # {{{ fix rhs and solve

    nodes = density_discr.nodes().with_queue(queue)
    source = np.array([rout, 0, 0])

    def u_incoming_func(x):
        #        return 1/cl.clmath.sqrt( (x[0] - source[0])**2
        #                                +(x[1] - source[1])**2
        #                                +(x[2] - source[2])**2 )
        return 1.0/la.norm(x.get()-source[:, None], axis=0)

    bc = cl.array.to_device(queue, u_incoming_func(nodes))

    bvp_rhs = bind(qbx, sqrt_w*sym.var("bc"))(queue, bc=bc)

    from pytential.solve import gmres
    gmres_result = gmres(
            bound_op.scipy_op(queue, "sigma", dtype=np.float64),
            bvp_rhs, tol=1e-14, progress=True,
            stall_iterations=0,
            hard_failure=True)

    sigma = bind(qbx, sym.var("sigma")/sqrt_w)(queue, sigma=gmres_result.solution)

    # }}}

    from meshmode.discretization.visualization import make_visualizer
    bdry_vis = make_visualizer(queue, density_discr, 20)
    bdry_vis.write_vtk_file("laplace.vtu", [
        ("sigma", sigma),
        ])

    # {{{ postprocess/visualize

    repr_kwargs = dict(qbx_forced_limit=None)
    representation_sym = (
            sym.S(kernel, inv_sqrt_w_sigma, **repr_kwargs)
            + sym.D(kernel, inv_sqrt_w_sigma, **repr_kwargs))

    from sumpy.visualization import FieldPlotter
    fplot = FieldPlotter(np.zeros(3), extent=20, npoints=50)

    targets = cl.array.to_device(queue, fplot.points)

    qbx_stick_out = qbx.copy(target_stick_out_factor=0.2)

    try:
        fld_in_vol = bind(
                (qbx_stick_out, PointsTarget(targets)),
                representation_sym)(queue, sigma=sigma).get()
    except QBXTargetAssociationFailedException as e:
        fplot.write_vtk_file(
                "failed-targets.vts",
                [
                    ("failed", e.failed_target_flags.get(queue))
                    ]
                )
        raise

    #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
    fplot.write_vtk_file(
            "potential-laplace-3d.vts",
            [
                ("potential", fld_in_vol),
                ]
            )
Beispiel #23
0
def main(curve_fn=starfish, visualize=True):
    import logging
    logging.basicConfig(level=logging.WARNING)  # INFO for more progress info

    import pyopencl as cl
    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue, force_device_scalars=True)

    from meshmode.mesh.generation import make_curve_mesh
    mesh = make_curve_mesh(
            curve_fn,
            np.linspace(0, 1, nelements+1),
            target_order)

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory

    pre_density_discr = Discretization(
            actx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))

    qbx = QBXLayerPotentialSource(
            pre_density_discr, 4*target_order, qbx_order,
            fmm_order=qbx_order+3,
            target_association_tolerance=0.005,
            #fmm_backend="fmmlib",
            )

    from pytential.target import PointsTarget
    fplot = FieldPlotter(np.zeros(2), extent=5, npoints=1000)
    targets_dev = actx.from_numpy(fplot.points)

    from pytential import GeometryCollection
    places = GeometryCollection({
        "qbx": qbx,
        "targets": PointsTarget(targets_dev),
        }, auto_where="qbx")

    density_discr = places.get_discretization("qbx")

    nodes = thaw(density_discr.nodes(), actx)
    angle = actx.np.arctan2(nodes[1], nodes[0])

    if k:
        kernel = HelmholtzKernel(2)
        kernel_kwargs = {"k": sym.var("k")}
    else:
        kernel = LaplaceKernel(2)
        kernel_kwargs = {}

    def op(**kwargs):
        kwargs.update(kernel_kwargs)

        #op = sym.d_dx(sym.S(kernel, sym.var("sigma"), **kwargs))
        return sym.D(kernel, sym.var("sigma"), **kwargs)
        #op = sym.S(kernel, sym.var("sigma"), qbx_forced_limit=None, **kwargs)

    if 0:
        from random import randrange
        sigma = actx.zeros(density_discr.ndofs, angle.entry_dtype)
        for _ in range(5):
            sigma[randrange(len(sigma))] = 1

        from arraycontext import unflatten
        sigma = unflatten(angle, sigma, actx)
    else:
        sigma = actx.np.cos(mode_nr*angle)

    if isinstance(kernel, HelmholtzKernel):
        for i, elem in np.ndenumerate(sigma):
            sigma[i] = elem.astype(np.complex128)

    bound_bdry_op = bind(places, op())
    if visualize:
        fld_in_vol = actx.to_numpy(
                bind(places, op(
                    source="qbx",
                    target="targets",
                    qbx_forced_limit=None))(actx, sigma=sigma, k=k))

        if enable_mayavi:
            fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
        else:
            fplot.write_vtk_file("layerpot-potential.vts", [
                ("potential", fld_in_vol)
                ])

    if 0:
        apply_op = bound_bdry_op.scipy_op(actx, "sigma", np.float64, k=k)
        from sumpy.tools import build_matrix
        mat = build_matrix(apply_op)

        import matplotlib.pyplot as pt
        pt.imshow(mat)
        pt.colorbar()
        pt.show()

    if enable_mayavi:
        # {{{ plot boundary field

        from arraycontext import flatten
        fld_on_bdry = actx.to_numpy(
                flatten(bound_bdry_op(actx, sigma=sigma, k=k), actx))
        nodes_host = actx.to_numpy(
                flatten(density_discr.nodes(), actx)
                ).reshape(density_discr.ambient_dim, -1)

        mlab.points3d(nodes_host[0], nodes_host[1],
                fld_on_bdry.real, scale_factor=0.03)

        mlab.colorbar()
        mlab.show()
def main():
    logging.basicConfig(level=logging.INFO)

    nelements = 60
    qbx_order = 3
    k_fac = 4
    k0 = 3 * k_fac
    k1 = 2.9 * k_fac
    mesh_order = 10
    bdry_quad_order = mesh_order
    bdry_ovsmp_quad_order = bdry_quad_order * 4
    fmm_order = qbx_order * 2

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    from meshmode.mesh.generation import ellipse, make_curve_mesh
    from functools import partial
    mesh = make_curve_mesh(partial(ellipse, 3),
                           np.linspace(0, 1, nelements + 1), mesh_order)

    density_discr = Discretization(
        cl_ctx, mesh,
        InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order))

    logger.info("%d elements" % mesh.nelements)

    # from meshmode.discretization.visualization import make_visualizer
    # bdry_vis = make_visualizer(queue, density_discr, 20)

    # {{{ solve bvp

    from sumpy.kernel import HelmholtzKernel
    kernel = HelmholtzKernel(2)

    beta = 2.5 * k_fac
    K0 = np.sqrt(k0**2 - beta**2)
    K1 = np.sqrt(k1**2 - beta**2)

    from pytential.symbolic.pde.scalar import DielectricSDRep2DBoundaryOperator
    pde_op = DielectricSDRep2DBoundaryOperator(
        mode='tm',
        k_vacuum=1,
        interfaces=((0, 1, sym.DEFAULT_SOURCE), ),
        domain_k_exprs=(k0, k1),
        beta=beta)

    op_unknown_sym = pde_op.make_unknown("unknown")

    representation0_sym = pde_op.representation(op_unknown_sym, 0)
    representation1_sym = pde_op.representation(op_unknown_sym, 1)

    from pytential.qbx import QBXLayerPotentialSource
    qbx = QBXLayerPotentialSource(density_discr,
                                  fine_order=bdry_ovsmp_quad_order,
                                  qbx_order=qbx_order,
                                  fmm_order=fmm_order)

    bound_pde_op = bind(qbx, pde_op.operator(op_unknown_sym))

    # in inner domain
    sources_1 = make_obj_array(list(np.array([[-1.5, 0.5]]).T.copy()))
    strengths_1 = np.array([1])

    from sumpy.p2p import P2P
    pot_p2p = P2P(cl_ctx, [kernel], exclude_self=False)

    _, (Einc, ) = pot_p2p(queue,
                          density_discr.nodes(),
                          sources_1, [strengths_1],
                          out_host=False,
                          k=K0)

    sqrt_w = bind(density_discr, sym.sqrt_jac_q_weight())(queue)

    bvp_rhs = np.zeros(len(pde_op.bcs), dtype=object)
    for i_bc, terms in enumerate(pde_op.bcs):
        for term in terms:
            assert term.i_interface == 0
            assert term.field_kind == pde_op.field_kind_e

            if term.direction == pde_op.dir_none:
                bvp_rhs[i_bc] += (term.coeff_outer * (-Einc))
            elif term.direction == pde_op.dir_normal:
                # no jump in normal derivative
                bvp_rhs[i_bc] += 0 * Einc
            else:
                raise NotImplementedError("direction spec in RHS")

        bvp_rhs[i_bc] *= sqrt_w

    from pytential.solve import gmres
    gmres_result = gmres(bound_pde_op.scipy_op(queue,
                                               "unknown",
                                               dtype=np.complex128,
                                               domains=[sym.DEFAULT_TARGET] *
                                               2,
                                               K0=K0,
                                               K1=K1),
                         bvp_rhs,
                         tol=1e-6,
                         progress=True,
                         hard_failure=True,
                         stall_iterations=0)

    # }}}

    unknown = gmres_result.solution

    # {{{ visualize

    from pytential.qbx import QBXLayerPotentialSource
    lap_qbx = QBXLayerPotentialSource(density_discr,
                                      fine_order=bdry_ovsmp_quad_order,
                                      qbx_order=qbx_order,
                                      fmm_order=qbx_order)

    from sumpy.visualization import FieldPlotter
    fplot = FieldPlotter(np.zeros(2), extent=5, npoints=300)
    from pytential.target import PointsTarget
    fld0 = bind((qbx, PointsTarget(fplot.points)),
                representation0_sym)(queue, unknown=unknown, K0=K0).get()
    fld1 = bind((qbx, PointsTarget(fplot.points)),
                representation1_sym)(queue, unknown=unknown, K1=K1).get()
    ones = cl.array.empty(queue, density_discr.nnodes, np.float64)
    dom1_indicator = -bind(
        (lap_qbx, PointsTarget(fplot.points)), sym.D(0, sym.var("sigma")))(
            queue, sigma=ones.fill(1)).get()
    _, (fld_inc_vol, ) = pot_p2p(queue,
                                 fplot.points,
                                 sources_1, [strengths_1],
                                 out_host=True,
                                 k=K0)

    #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
    fplot.write_vtk_file("potential.vts", [
        ("fld0", fld0),
        ("fld1", fld1),
        ("fld_inc_vol", fld_inc_vol),
        ("fld_total", ((fld_inc_vol + fld0) *
                       (1 - dom1_indicator) + fld1 * dom1_indicator)),
        ("dom1_indicator", dom1_indicator),
    ])
Beispiel #25
0
def main():
    import logging
    logging.basicConfig(level=logging.WARNING)  # INFO for more progress info

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    from meshmode.mesh.generation import (  # noqa
        make_curve_mesh, starfish, ellipse, drop)
    mesh = make_curve_mesh(
        #lambda t: ellipse(1, t),
        starfish,
        np.linspace(0, 1, nelements + 1),
        target_order)

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory

    pre_density_discr = Discretization(
        cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))

    qbx, _ = QBXLayerPotentialSource(
        pre_density_discr,
        4 * target_order,
        qbx_order,
        fmm_order=qbx_order + 3,
        target_association_tolerance=0.005).with_refinement()

    density_discr = qbx.density_discr

    nodes = density_discr.nodes().with_queue(queue)

    angle = cl.clmath.atan2(nodes[1], nodes[0])

    def op(**kwargs):
        kwargs.update(kernel_kwargs)

        #op = sym.d_dx(sym.S(kernel, sym.var("sigma"), **kwargs))
        return sym.D(kernel, sym.var("sigma"), **kwargs)
        #op = sym.S(kernel, sym.var("sigma"), qbx_forced_limit=None, **kwargs)

    sigma = cl.clmath.cos(mode_nr * angle)
    if 0:
        sigma = 0 * angle
        from random import randrange
        for i in range(5):
            sigma[randrange(len(sigma))] = 1

    if isinstance(kernel, HelmholtzKernel):
        sigma = sigma.astype(np.complex128)

    bound_bdry_op = bind(qbx, op())
    #mlab.figure(bgcolor=(1, 1, 1))
    if 1:
        fplot = FieldPlotter(np.zeros(2), extent=5, npoints=1000)
        from pytential.target import PointsTarget

        targets_dev = cl.array.to_device(queue, fplot.points)
        fld_in_vol = bind((qbx, PointsTarget(targets_dev)),
                          op(qbx_forced_limit=None))(queue, sigma=sigma,
                                                     k=k).get()

        if enable_mayavi:
            fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
        else:
            fplot.write_vtk_file("potential-2d.vts",
                                 [("potential", fld_in_vol)])

    if 0:

        def apply_op(density):
            return bound_bdry_op(queue,
                                 sigma=cl.array.to_device(queue, density),
                                 k=k).get()

        from sumpy.tools import build_matrix
        n = len(sigma)
        mat = build_matrix(apply_op, dtype=np.float64, shape=(n, n))

        import matplotlib.pyplot as pt
        pt.imshow(mat)
        pt.colorbar()
        pt.show()

    if enable_mayavi:
        # {{{ plot boundary field

        fld_on_bdry = bound_bdry_op(queue, sigma=sigma, k=k).get()

        nodes_host = density_discr.nodes().get(queue=queue)
        mlab.points3d(nodes_host[0],
                      nodes_host[1],
                      fld_on_bdry.real,
                      scale_factor=0.03)

        # }}}

    if enable_mayavi:
        mlab.colorbar()
        mlab.show()
Beispiel #26
0
def main():
    import logging
    logging.basicConfig(level=logging.WARNING)  # INFO for more progress info

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    from meshmode.mesh.generation import (  # noqa
            make_curve_mesh, starfish, ellipse, drop)
    mesh = make_curve_mesh(
            #lambda t: ellipse(1, t),
            starfish,
            np.linspace(0, 1, nelements+1),
            target_order)

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory

    pre_density_discr = Discretization(
            cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))

    qbx, _ = QBXLayerPotentialSource(pre_density_discr, 4*target_order, qbx_order,
            fmm_order=qbx_order+3,
            target_association_tolerance=0.005).with_refinement()

    density_discr = qbx.density_discr

    nodes = density_discr.nodes().with_queue(queue)

    angle = cl.clmath.atan2(nodes[1], nodes[0])

    def op(**kwargs):
        kwargs.update(kernel_kwargs)

        #op = sym.d_dx(sym.S(kernel, sym.var("sigma"), **kwargs))
        return sym.D(kernel, sym.var("sigma"), **kwargs)
        #op = sym.S(kernel, sym.var("sigma"), qbx_forced_limit=None, **kwargs)

    sigma = cl.clmath.cos(mode_nr*angle)
    if 0:
        sigma = 0*angle
        from random import randrange
        for i in range(5):
            sigma[randrange(len(sigma))] = 1

    if isinstance(kernel, HelmholtzKernel):
        sigma = sigma.astype(np.complex128)

    bound_bdry_op = bind(qbx, op())
    #mlab.figure(bgcolor=(1, 1, 1))
    if 1:
        fplot = FieldPlotter(np.zeros(2), extent=5, npoints=1000)
        from pytential.target import PointsTarget

        targets_dev = cl.array.to_device(queue, fplot.points)
        fld_in_vol = bind(
                (qbx, PointsTarget(targets_dev)),
                op(qbx_forced_limit=None))(queue, sigma=sigma, k=k).get()

        if enable_mayavi:
            fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
        else:
            fplot.write_vtk_file(
                    "potential-2d.vts",
                    [
                        ("potential", fld_in_vol)
                        ]
                    )

    if 0:
        def apply_op(density):
            return bound_bdry_op(
                    queue, sigma=cl.array.to_device(queue, density), k=k).get()

        from sumpy.tools import build_matrix
        n = len(sigma)
        mat = build_matrix(apply_op, dtype=np.float64, shape=(n, n))

        import matplotlib.pyplot as pt
        pt.imshow(mat)
        pt.colorbar()
        pt.show()

    if enable_mayavi:
        # {{{ plot boundary field

        fld_on_bdry = bound_bdry_op(queue, sigma=sigma, k=k).get()

        nodes_host = density_discr.nodes().get(queue=queue)
        mlab.points3d(nodes_host[0], nodes_host[1],
                fld_on_bdry.real, scale_factor=0.03)

        # }}}

    if enable_mayavi:
        mlab.colorbar()
        mlab.show()
def run_dielectric_test(cl_ctx, queue, nelements, qbx_order,
        op_class, mode,
        k0=3, k1=2.9, mesh_order=10,
        bdry_quad_order=None, bdry_ovsmp_quad_order=None,
        use_l2_weighting=False,
        fmm_order=None, visualize=False):

    if fmm_order is None:
        fmm_order = qbx_order * 2
    if bdry_quad_order is None:
        bdry_quad_order = mesh_order
    if bdry_ovsmp_quad_order is None:
        bdry_ovsmp_quad_order = 4*bdry_quad_order

    from meshmode.mesh.generation import ellipse, make_curve_mesh
    from functools import partial
    mesh = make_curve_mesh(
            partial(ellipse, 3),
            np.linspace(0, 1, nelements+1),
            mesh_order)

    density_discr = Discretization(
            cl_ctx, mesh,
            InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order))

    logger.info("%d elements" % mesh.nelements)

    # from meshmode.discretization.visualization import make_visualizer
    # bdry_vis = make_visualizer(queue, density_discr, 20)

    # {{{ solve bvp

    from sumpy.kernel import HelmholtzKernel, AxisTargetDerivative
    kernel = HelmholtzKernel(2)

    beta = 2.5
    K0 = np.sqrt(k0**2-beta**2)  # noqa
    K1 = np.sqrt(k1**2-beta**2)  # noqa

    pde_op = op_class(
            mode,
            k_vacuum=1,
            interfaces=((0, 1, sym.DEFAULT_SOURCE),),
            domain_k_exprs=(k0, k1),
            beta=beta,
            use_l2_weighting=use_l2_weighting)

    op_unknown_sym = pde_op.make_unknown("unknown")

    representation0_sym = pde_op.representation(op_unknown_sym, 0)
    representation1_sym = pde_op.representation(op_unknown_sym, 1)

    from pytential.qbx import QBXLayerPotentialSource
    qbx = QBXLayerPotentialSource(
            density_discr, fine_order=bdry_ovsmp_quad_order, qbx_order=qbx_order,
            fmm_order=fmm_order
            ).with_refinement()

    #print(sym.pretty(pde_op.operator(op_unknown_sym)))
    #1/0
    bound_pde_op = bind(qbx, pde_op.operator(op_unknown_sym))

    e_factor = float(pde_op.ez_enabled)
    h_factor = float(pde_op.hz_enabled)

    e_sources_0 = make_obj_array(list(np.array([
        [0.1, 0.2]
        ]).T.copy()))
    e_strengths_0 = np.array([1*e_factor])
    e_sources_1 = make_obj_array(list(np.array([
        [4, 4]
        ]).T.copy()))
    e_strengths_1 = np.array([1*e_factor])

    h_sources_0 = make_obj_array(list(np.array([
        [0.2, 0.1]
        ]).T.copy()))
    h_strengths_0 = np.array([1*h_factor])
    h_sources_1 = make_obj_array(list(np.array([
        [4, 5]
        ]).T.copy()))
    h_strengths_1 = np.array([1*h_factor])

    kernel_grad = [
        AxisTargetDerivative(i, kernel) for i in range(density_discr.ambient_dim)]

    from sumpy.p2p import P2P
    pot_p2p = P2P(cl_ctx, [kernel], exclude_self=False)
    pot_p2p_grad = P2P(cl_ctx, kernel_grad, exclude_self=False)

    normal = bind(density_discr, sym.normal())(queue).as_vector(np.object)
    tangent = bind(
        density_discr,
        sym.pseudoscalar()/sym.area_element())(queue).as_vector(np.object)

    _, (E0,) = pot_p2p(queue, density_discr.nodes(), e_sources_0, [e_strengths_0],
                    out_host=False, k=K0)
    _, (E1,) = pot_p2p(queue, density_discr.nodes(), e_sources_1, [e_strengths_1],
                    out_host=False, k=K1)
    _, (grad0_E0, grad1_E0) = pot_p2p_grad(
        queue, density_discr.nodes(), e_sources_0, [e_strengths_0],
        out_host=False, k=K0)
    _, (grad0_E1, grad1_E1) = pot_p2p_grad(
        queue, density_discr.nodes(), e_sources_1, [e_strengths_1],
        out_host=False, k=K1)

    _, (H0,) = pot_p2p(queue, density_discr.nodes(), h_sources_0, [h_strengths_0],
                    out_host=False, k=K0)
    _, (H1,) = pot_p2p(queue, density_discr.nodes(), h_sources_1, [h_strengths_1],
                    out_host=False, k=K1)
    _, (grad0_H0, grad1_H0) = pot_p2p_grad(
        queue, density_discr.nodes(), h_sources_0, [h_strengths_0],
        out_host=False, k=K0)
    _, (grad0_H1, grad1_H1) = pot_p2p_grad(
        queue, density_discr.nodes(), h_sources_1, [h_strengths_1],
        out_host=False, k=K1)

    E0_dntarget = (grad0_E0*normal[0] + grad1_E0*normal[1])  # noqa
    E1_dntarget = (grad0_E1*normal[0] + grad1_E1*normal[1])  # noqa

    H0_dntarget = (grad0_H0*normal[0] + grad1_H0*normal[1])  # noqa
    H1_dntarget = (grad0_H1*normal[0] + grad1_H1*normal[1])  # noqa

    E0_dttarget = (grad0_E0*tangent[0] + grad1_E0*tangent[1])  # noqa
    E1_dttarget = (grad0_E1*tangent[0] + grad1_E1*tangent[1])  # noqa

    H0_dttarget = (grad0_H0*tangent[0] + grad1_H0*tangent[1])  # noqa
    H1_dttarget = (grad0_H1*tangent[0] + grad1_H1*tangent[1])  # noqa

    sqrt_w = bind(density_discr, sym.sqrt_jac_q_weight())(queue)

    bvp_rhs = np.zeros(len(pde_op.bcs), dtype=np.object)
    for i_bc, terms in enumerate(pde_op.bcs):
        for term in terms:
            assert term.i_interface == 0
            if term.field_kind == pde_op.field_kind_e:

                if term.direction == pde_op.dir_none:
                    bvp_rhs[i_bc] += (
                        term.coeff_outer * E0
                        + term.coeff_inner * E1)
                elif term.direction == pde_op.dir_normal:
                    bvp_rhs[i_bc] += (
                        term.coeff_outer * E0_dntarget
                        + term.coeff_inner * E1_dntarget)
                elif term.direction == pde_op.dir_tangential:
                    bvp_rhs[i_bc] += (
                        term.coeff_outer * E0_dttarget
                        + term.coeff_inner * E1_dttarget)
                else:
                    raise NotImplementedError("direction spec in RHS")

            elif term.field_kind == pde_op.field_kind_h:
                if term.direction == pde_op.dir_none:
                    bvp_rhs[i_bc] += (
                        term.coeff_outer * H0
                        + term.coeff_inner * H1)
                elif term.direction == pde_op.dir_normal:
                    bvp_rhs[i_bc] += (
                        term.coeff_outer * H0_dntarget
                        + term.coeff_inner * H1_dntarget)
                elif term.direction == pde_op.dir_tangential:
                    bvp_rhs[i_bc] += (
                        term.coeff_outer * H0_dttarget
                        + term.coeff_inner * H1_dttarget)
                else:
                    raise NotImplementedError("direction spec in RHS")

            if use_l2_weighting:
                bvp_rhs[i_bc] *= sqrt_w

    scipy_op = bound_pde_op.scipy_op(queue, "unknown",
            domains=[sym.DEFAULT_TARGET]*len(pde_op.bcs), K0=K0, K1=K1,
            dtype=np.complex128)

    if mode == "tem" or op_class is SRep:
        from sumpy.tools import vector_from_device, vector_to_device
        from pytential.solve import lu
        unknown = lu(scipy_op, vector_from_device(queue, bvp_rhs))
        unknown = vector_to_device(queue, unknown)

    else:
        from pytential.solve import gmres
        gmres_result = gmres(scipy_op,
                bvp_rhs, tol=1e-14, progress=True,
                hard_failure=True, stall_iterations=0)

        unknown = gmres_result.solution

    # }}}

    targets_0 = make_obj_array(list(np.array([
        [3.2 + t, -4]
        for t in [0, 0.5, 1]
        ]).T.copy()))
    targets_1 = make_obj_array(list(np.array([
        [t*-0.3, t*-0.2]
        for t in [0, 0.5, 1]
        ]).T.copy()))

    from pytential.target import PointsTarget
    from sumpy.tools import vector_from_device
    F0_tgt = vector_from_device(queue, bind(  # noqa
            (qbx, PointsTarget(targets_0)),
            representation0_sym)(queue, unknown=unknown, K0=K0, K1=K1))
    F1_tgt = vector_from_device(queue, bind(  # noqa
            (qbx, PointsTarget(targets_1)),
            representation1_sym)(queue, unknown=unknown, K0=K0, K1=K1))

    _, (E0_tgt_true,) = pot_p2p(queue, targets_0, e_sources_0, [e_strengths_0],
                    out_host=True, k=K0)
    _, (E1_tgt_true,) = pot_p2p(queue, targets_1, e_sources_1, [e_strengths_1],
                    out_host=True, k=K1)

    _, (H0_tgt_true,) = pot_p2p(queue, targets_0, h_sources_0, [h_strengths_0],
                    out_host=True, k=K0)
    _, (H1_tgt_true,) = pot_p2p(queue, targets_1, h_sources_1, [h_strengths_1],
                    out_host=True, k=K1)

    err_F0_total = 0  # noqa
    err_F1_total = 0  # noqa

    i_field = 0

    def vec_norm(ary):
        return la.norm(ary.reshape(-1))

    def field_kind_to_string(field_kind):
        return {pde_op.field_kind_e: "E", pde_op.field_kind_h: "H"}[field_kind]

    for field_kind in pde_op.field_kinds:
        if not pde_op.is_field_present(field_kind):
            continue

        if field_kind == pde_op.field_kind_e:
            F0_tgt_true = E0_tgt_true  # noqa
            F1_tgt_true = E1_tgt_true  # noqa
        elif field_kind == pde_op.field_kind_h:
            F0_tgt_true = H0_tgt_true  # noqa
            F1_tgt_true = H1_tgt_true  # noqa
        else:
            assert False

        abs_err_F0 = vec_norm(F0_tgt[i_field] - F0_tgt_true)  # noqa
        abs_err_F1 = vec_norm(F1_tgt[i_field] - F1_tgt_true)  # noqa

        rel_err_F0 = abs_err_F0/vec_norm(F0_tgt_true)  # noqa
        rel_err_F1 = abs_err_F1/vec_norm(F1_tgt_true)  # noqa

        err_F0_total = max(rel_err_F0, err_F0_total)  # noqa
        err_F1_total = max(rel_err_F1, err_F1_total)  # noqa

        print("Abs Err %s0" % field_kind_to_string(field_kind), abs_err_F0)
        print("Abs Err %s1" % field_kind_to_string(field_kind), abs_err_F1)

        print("Rel Err %s0" % field_kind_to_string(field_kind), rel_err_F0)
        print("Rel Err %s1" % field_kind_to_string(field_kind), rel_err_F1)

        i_field += 1

    if visualize:
        from sumpy.visualization import FieldPlotter
        fplot = FieldPlotter(np.zeros(2), extent=5, npoints=300)
        from pytential.target import PointsTarget
        fld0 = bind(
                (qbx, PointsTarget(fplot.points)),
                representation0_sym)(queue, unknown=unknown, K0=K0)
        fld1 = bind(
                (qbx, PointsTarget(fplot.points)),
                representation1_sym)(queue, unknown=unknown, K1=K1)

        comp_fields = []
        i_field = 0
        for field_kind in pde_op.field_kinds:
            if not pde_op.is_field_present(field_kind):
                continue

            fld_str = field_kind_to_string(field_kind)
            comp_fields.extend([
                ("%s_fld0" % fld_str, fld0[i_field].get()),
                ("%s_fld1" % fld_str, fld1[i_field].get()),
                ])

            i_field += 0

        low_order_qbx = QBXLayerPotentialSource(
                density_discr, fine_order=bdry_ovsmp_quad_order, qbx_order=2,
                fmm_order=3).with_refinement()
        from sumpy.kernel import LaplaceKernel
        from pytential.target import PointsTarget
        ones = (cl.array.empty(queue, (density_discr.nnodes,), dtype=np.float64)
                .fill(1))
        ind_func = - bind((low_order_qbx, PointsTarget(fplot.points)),
                sym.D(LaplaceKernel(2), sym.var("u")))(
                        queue, u=ones).get()

        _, (e_fld0_true,) = pot_p2p(
                queue, fplot.points, e_sources_0, [e_strengths_0],
                out_host=True, k=K0)
        _, (e_fld1_true,) = pot_p2p(
                queue, fplot.points, e_sources_1, [e_strengths_1],
                out_host=True, k=K1)
        _, (h_fld0_true,) = pot_p2p(
                queue, fplot.points, h_sources_0, [h_strengths_0],
                out_host=True, k=K0)
        _, (h_fld1_true,) = pot_p2p(
                queue, fplot.points, h_sources_1, [h_strengths_1],
                out_host=True, k=K1)

        #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
        fplot.write_vtk_file(
                "potential-n%d.vts" % nelements,
                [
                    ("e_fld0_true", e_fld0_true),
                    ("e_fld1_true", e_fld1_true),
                    ("h_fld0_true", h_fld0_true),
                    ("h_fld1_true", h_fld1_true),
                    ("ind", ind_func),
                    ] + comp_fields
                )

    return err_F0_total, err_F1_total
Beispiel #28
0
def test_off_surface_eval(ctx_getter, use_fmm, do_plot=False):
    logging.basicConfig(level=logging.INFO)

    cl_ctx = ctx_getter()
    queue = cl.CommandQueue(cl_ctx)

    # prevent cache 'splosion
    from sympy.core.cache import clear_cache
    clear_cache()

    nelements = 30
    target_order = 8
    qbx_order = 3
    if use_fmm:
        fmm_order = qbx_order
    else:
        fmm_order = False

    mesh = make_curve_mesh(partial(ellipse, 3),
            np.linspace(0, 1, nelements+1),
            target_order)

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory

    pre_density_discr = Discretization(
            cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))
    qbx, _ = QBXLayerPotentialSource(
            pre_density_discr,
            4*target_order,
            qbx_order,
            fmm_order=fmm_order,
            ).with_refinement()

    density_discr = qbx.density_discr

    from sumpy.kernel import LaplaceKernel
    op = sym.D(LaplaceKernel(2), sym.var("sigma"), qbx_forced_limit=-2)

    sigma = density_discr.zeros(queue) + 1

    fplot = FieldPlotter(np.zeros(2), extent=0.54, npoints=30)
    from pytential.target import PointsTarget
    fld_in_vol = bind(
            (qbx, PointsTarget(fplot.points)),
            op)(queue, sigma=sigma)

    err = cl.clmath.fabs(fld_in_vol - (-1))

    linf_err = cl.array.max(err).get()
    print("l_inf error:", linf_err)

    if do_plot:
        fplot.show_scalar_in_matplotlib(fld_in_vol.get())
        import matplotlib.pyplot as pt
        pt.colorbar()
        pt.show()

    assert linf_err < 1e-3
Beispiel #29
0
#op = sym.S(kernel, sym.var("sigma"))

sigma = cl.clmath.cos(mode_nr*angle)
if 0:
    sigma = 0*angle
    from random import randrange
    for i in range(5):
        sigma[randrange(len(sigma))] = 1

if isinstance(kernel, HelmholtzKernel):
    sigma = sigma.astype(np.complex128)

bound_bdry_op = bind(qbx, op)
#mlab.figure(bgcolor=(1, 1, 1))
if 1:
    fplot = FieldPlotter(np.zeros(2), extent=5, npoints=1500)
    from pytential.target import PointsTarget
    fld_in_vol = bind(
            (qbx, PointsTarget(fplot.points)),
            op)(queue, sigma=sigma, k=k).get()

    #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
    fplot.write_vtk_file(
            "potential.vts",
            [
                ("potential", fld_in_vol)
                ]
            )

if 0:
    def apply_op(density):
def main():
    import logging
    logging.basicConfig(level=logging.WARNING)  # INFO for more progress info

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    from meshmode.mesh.generation import ellipse, make_curve_mesh
    from functools import partial

    if 0:
        mesh = make_curve_mesh(
                partial(ellipse, 1),
                np.linspace(0, 1, nelements+1),
                mesh_order)
    else:
        base_mesh = make_curve_mesh(
                partial(ellipse, 1),
                np.linspace(0, 1, nelements+1),
                mesh_order)

        from meshmode.mesh.processing import affine_map, merge_disjoint_meshes
        nx = 2
        ny = 2
        dx = 2 / nx
        meshes = [
                affine_map(
                    base_mesh,
                    A=np.diag([dx*0.25, dx*0.25]),
                    b=np.array([dx*(ix-nx/2), dx*(iy-ny/2)]))
                for ix in range(nx)
                for iy in range(ny)]

        mesh = merge_disjoint_meshes(meshes, single_group=True)

        if 0:
            from meshmode.mesh.visualization import draw_curve
            draw_curve(mesh)
            import matplotlib.pyplot as plt
            plt.show()

    pre_density_discr = Discretization(
            cl_ctx, mesh,
            InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order))

    from pytential.qbx import (
            QBXLayerPotentialSource, QBXTargetAssociationFailedException)
    qbx, _ = QBXLayerPotentialSource(
            pre_density_discr, fine_order=bdry_ovsmp_quad_order, qbx_order=qbx_order,
            fmm_order=fmm_order
            ).with_refinement()
    density_discr = qbx.density_discr

    # {{{ describe bvp

    from sumpy.kernel import LaplaceKernel, HelmholtzKernel
    kernel = HelmholtzKernel(2)

    cse = sym.cse

    sigma_sym = sym.var("sigma")
    sqrt_w = sym.sqrt_jac_q_weight(2)
    inv_sqrt_w_sigma = cse(sigma_sym/sqrt_w)

    # Brakhage-Werner parameter
    alpha = 1j

    # -1 for interior Dirichlet
    # +1 for exterior Dirichlet
    loc_sign = +1

    bdry_op_sym = (-loc_sign*0.5*sigma_sym
            + sqrt_w*(
                alpha*sym.S(kernel, inv_sqrt_w_sigma, k=sym.var("k"),
                    qbx_forced_limit=+1)
                - sym.D(kernel, inv_sqrt_w_sigma, k=sym.var("k"),
                    qbx_forced_limit="avg")
                ))

    # }}}

    bound_op = bind(qbx, bdry_op_sym)

    # {{{ fix rhs and solve

    nodes = density_discr.nodes().with_queue(queue)
    k_vec = np.array([2, 1])
    k_vec = k * k_vec / la.norm(k_vec, 2)

    def u_incoming_func(x):
        return cl.clmath.exp(
                1j * (x[0] * k_vec[0] + x[1] * k_vec[1]))

    bc = -u_incoming_func(nodes)

    bvp_rhs = bind(qbx, sqrt_w*sym.var("bc"))(queue, bc=bc)

    from pytential.solve import gmres
    gmres_result = gmres(
            bound_op.scipy_op(queue, "sigma", dtype=np.complex128, k=k),
            bvp_rhs, tol=1e-8, progress=True,
            stall_iterations=0,
            hard_failure=True)

    # }}}

    # {{{ postprocess/visualize

    sigma = gmres_result.solution

    repr_kwargs = dict(k=sym.var("k"), qbx_forced_limit=None)
    representation_sym = (
            alpha*sym.S(kernel, inv_sqrt_w_sigma, **repr_kwargs)
            - sym.D(kernel, inv_sqrt_w_sigma, **repr_kwargs))

    from sumpy.visualization import FieldPlotter
    fplot = FieldPlotter(np.zeros(2), extent=5, npoints=500)

    targets = cl.array.to_device(queue, fplot.points)

    u_incoming = u_incoming_func(targets)

    qbx_stick_out = qbx.copy(target_association_tolerance=0.05)

    ones_density = density_discr.zeros(queue)
    ones_density.fill(1)
    indicator = bind(
            (qbx_stick_out, PointsTarget(targets)),
            sym.D(LaplaceKernel(2), sym.var("sigma"), qbx_forced_limit=None))(
            queue, sigma=ones_density).get()

    try:
        fld_in_vol = bind(
                (qbx_stick_out, PointsTarget(targets)),
                representation_sym)(queue, sigma=sigma, k=k).get()
    except QBXTargetAssociationFailedException as e:
        fplot.write_vtk_file(
                "failed-targets.vts",
                [
                    ("failed", e.failed_target_flags.get(queue))
                    ]
                )
        raise

    #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
    fplot.write_vtk_file(
            "potential-helm.vts",
            [
                ("potential", fld_in_vol),
                ("indicator", indicator),
                ("u_incoming", u_incoming.get()),
                ]
            )
Beispiel #31
0
def run_exterior_stokes_2d(ctx_factory,
                           nelements,
                           mesh_order=4,
                           target_order=4,
                           qbx_order=4,
                           fmm_order=10,
                           mu=1,
                           circle_rad=1.5,
                           do_plot=False):

    # This program tests an exterior Stokes flow in 2D using the
    # compound representation given in Hsiao & Kress,
    # ``On an integral equation for the two-dimensional exterior Stokes problem,''
    # Applied Numerical Mathematics 1 (1985).

    logging.basicConfig(level=logging.INFO)

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    ovsmp_target_order = 4 * target_order

    from meshmode.mesh.generation import (  # noqa
        make_curve_mesh, starfish, ellipse, drop)
    mesh = make_curve_mesh(lambda t: circle_rad * ellipse(1, t),
                           np.linspace(0, 1, nelements + 1), target_order)
    coarse_density_discr = Discretization(
        cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))

    from pytential.qbx import QBXLayerPotentialSource
    target_association_tolerance = 0.05
    qbx, _ = QBXLayerPotentialSource(
        coarse_density_discr,
        fine_order=ovsmp_target_order,
        qbx_order=qbx_order,
        fmm_order=fmm_order,
        target_association_tolerance=target_association_tolerance,
        _expansions_in_tree_have_extent=True,
    ).with_refinement()

    density_discr = qbx.density_discr
    normal = bind(density_discr, sym.normal(2).as_vector())(queue)
    path_length = bind(density_discr, sym.integral(2, 1, 1))(queue)

    # {{{ describe bvp

    from pytential.symbolic.stokes import StressletWrapper, StokesletWrapper
    dim = 2
    cse = sym.cse

    sigma_sym = sym.make_sym_vector("sigma", dim)
    meanless_sigma_sym = cse(sigma_sym - sym.mean(2, 1, sigma_sym))
    int_sigma = sym.Ones() * sym.integral(2, 1, sigma_sym)

    nvec_sym = sym.make_sym_vector("normal", dim)
    mu_sym = sym.var("mu")

    # -1 for interior Dirichlet
    # +1 for exterior Dirichlet
    loc_sign = 1

    stresslet_obj = StressletWrapper(dim=2)
    stokeslet_obj = StokesletWrapper(dim=2)
    bdry_op_sym = (-loc_sign * 0.5 * sigma_sym - stresslet_obj.apply(
        sigma_sym, nvec_sym, mu_sym, qbx_forced_limit='avg') +
                   stokeslet_obj.apply(
                       meanless_sigma_sym, mu_sym, qbx_forced_limit='avg') -
                   (0.5 / np.pi) * int_sigma)

    # }}}

    bound_op = bind(qbx, bdry_op_sym)

    # {{{ fix rhs and solve

    def fund_soln(x, y, loc, strength):
        #with direction (1,0) for point source
        r = cl.clmath.sqrt((x - loc[0])**2 + (y - loc[1])**2)
        scaling = strength / (4 * np.pi * mu)
        xcomp = (-cl.clmath.log(r) + (x - loc[0])**2 / r**2) * scaling
        ycomp = ((x - loc[0]) * (y - loc[1]) / r**2) * scaling
        return [xcomp, ycomp]

    def rotlet_soln(x, y, loc):
        r = cl.clmath.sqrt((x - loc[0])**2 + (y - loc[1])**2)
        xcomp = -(y - loc[1]) / r**2
        ycomp = (x - loc[0]) / r**2
        return [xcomp, ycomp]

    def fund_and_rot_soln(x, y, loc, strength):
        #with direction (1,0) for point source
        r = cl.clmath.sqrt((x - loc[0])**2 + (y - loc[1])**2)
        scaling = strength / (4 * np.pi * mu)
        xcomp = ((-cl.clmath.log(r) + (x - loc[0])**2 / r**2) * scaling -
                 (y - loc[1]) * strength * 0.125 / r**2 + 3.3)
        ycomp = (((x - loc[0]) * (y - loc[1]) / r**2) * scaling +
                 (x - loc[0]) * strength * 0.125 / r**2 + 1.5)
        return [xcomp, ycomp]

    nodes = density_discr.nodes().with_queue(queue)
    fund_soln_loc = np.array([0.5, -0.2])
    strength = 100.
    bc = fund_and_rot_soln(nodes[0], nodes[1], fund_soln_loc, strength)

    omega_sym = sym.make_sym_vector("omega", dim)
    u_A_sym_bdry = stokeslet_obj.apply(  # noqa: N806
        omega_sym, mu_sym, qbx_forced_limit=1)

    omega = [
        cl.array.to_device(queue,
                           (strength / path_length) * np.ones(len(nodes[0]))),
        cl.array.to_device(queue, np.zeros(len(nodes[0])))
    ]
    bvp_rhs = bind(qbx,
                   sym.make_sym_vector("bc", dim) + u_A_sym_bdry)(queue,
                                                                  bc=bc,
                                                                  mu=mu,
                                                                  omega=omega)
    gmres_result = gmres(bound_op.scipy_op(queue,
                                           "sigma",
                                           np.float64,
                                           mu=mu,
                                           normal=normal),
                         bvp_rhs,
                         x0=bvp_rhs,
                         tol=1e-9,
                         progress=True,
                         stall_iterations=0,
                         hard_failure=True)

    # }}}

    # {{{ postprocess/visualize

    sigma = gmres_result.solution
    sigma_int_val_sym = sym.make_sym_vector("sigma_int_val", 2)
    int_val = bind(qbx, sym.integral(2, 1, sigma_sym))(queue, sigma=sigma)
    int_val = -int_val / (2 * np.pi)
    print("int_val = ", int_val)

    u_A_sym_vol = stokeslet_obj.apply(  # noqa: N806
        omega_sym, mu_sym, qbx_forced_limit=2)
    representation_sym = (
        -stresslet_obj.apply(sigma_sym, nvec_sym, mu_sym, qbx_forced_limit=2) +
        stokeslet_obj.apply(meanless_sigma_sym, mu_sym, qbx_forced_limit=2) -
        u_A_sym_vol + sigma_int_val_sym)

    nsamp = 30
    eval_points_1d = np.linspace(-3., 3., nsamp)
    eval_points = np.zeros((2, len(eval_points_1d)**2))
    eval_points[0, :] = np.tile(eval_points_1d, len(eval_points_1d))
    eval_points[1, :] = np.repeat(eval_points_1d, len(eval_points_1d))

    def circle_mask(test_points, radius):
        return (test_points[0, :]**2 + test_points[1, :]**2 > radius**2)

    def outside_circle(test_points, radius):
        mask = circle_mask(test_points, radius)
        return np.array([row[mask] for row in test_points])

    eval_points = outside_circle(eval_points, radius=circle_rad)
    from pytential.target import PointsTarget
    vel = bind((qbx, PointsTarget(eval_points)),
               representation_sym)(queue,
                                   sigma=sigma,
                                   mu=mu,
                                   normal=normal,
                                   sigma_int_val=int_val,
                                   omega=omega)
    print("@@@@@@@@")

    fplot = FieldPlotter(np.zeros(2), extent=6, npoints=100)
    plot_pts = outside_circle(fplot.points, radius=circle_rad)
    plot_vel = bind((qbx, PointsTarget(plot_pts)),
                    representation_sym)(queue,
                                        sigma=sigma,
                                        mu=mu,
                                        normal=normal,
                                        sigma_int_val=int_val,
                                        omega=omega)

    def get_obj_array(obj_array):
        return make_obj_array([ary.get() for ary in obj_array])

    exact_soln = fund_and_rot_soln(cl.array.to_device(queue, eval_points[0]),
                                   cl.array.to_device(queue, eval_points[1]),
                                   fund_soln_loc, strength)

    vel = get_obj_array(vel)
    err = vel - get_obj_array(exact_soln)

    # FIXME: Pointwise relative errors don't make sense!
    rel_err = err / (get_obj_array(exact_soln))

    if 0:
        print("@@@@@@@@")
        print("vel[0], err[0], rel_err[0] ***** vel[1], err[1], rel_err[1]: ")
        for i in range(len(vel[0])):
            print("%15.8e, %15.8e, %15.8e ***** %15.8e, %15.8e, %15.8e\n" %
                  (vel[0][i], err[0][i], rel_err[0][i], vel[1][i], err[1][i],
                   rel_err[1][i]))

        print("@@@@@@@@")

    l2_err = np.sqrt((6. / (nsamp - 1))**2 * np.sum(err[0] * err[0]) +
                     (6. / (nsamp - 1))**2 * np.sum(err[1] * err[1]))
    l2_rel_err = np.sqrt((6. /
                          (nsamp - 1))**2 * np.sum(rel_err[0] * rel_err[0]) +
                         (6. /
                          (nsamp - 1))**2 * np.sum(rel_err[1] * rel_err[1]))

    print("L2 error estimate: ", l2_err)
    print("L2 rel error estimate: ", l2_rel_err)
    print("max error at sampled points: ", max(abs(err[0])), max(abs(err[1])))
    print("max rel error at sampled points: ", max(abs(rel_err[0])),
          max(abs(rel_err[1])))

    if do_plot:
        import matplotlib
        matplotlib.use("Agg")
        import matplotlib.pyplot as plt

        full_pot = np.zeros_like(fplot.points) * float("nan")
        mask = circle_mask(fplot.points, radius=circle_rad)

        for i, vel in enumerate(plot_vel):
            full_pot[i, mask] = vel.get()

        plt.quiver(fplot.points[0],
                   fplot.points[1],
                   full_pot[0],
                   full_pot[1],
                   linewidth=0.1)
        plt.savefig("exterior-2d-field.pdf")

    # }}}

    h_max = bind(qbx, sym.h_max(qbx.ambient_dim))(queue)
    return h_max, l2_err
Beispiel #32
0
def timing_run(nx, ny):
    import logging
    logging.basicConfig(level=logging.WARNING)  # INFO for more progress info

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    mesh = make_mesh(nx=nx, ny=ny)

    density_discr = Discretization(
            cl_ctx, mesh,
            InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order))

    from pytential.qbx import (
            QBXLayerPotentialSource, QBXTargetAssociationFailedException)
    qbx = QBXLayerPotentialSource(
            density_discr, fine_order=bdry_ovsmp_quad_order, qbx_order=qbx_order,
            fmm_order=fmm_order
            )

    # {{{ describe bvp

    from sumpy.kernel import HelmholtzKernel
    kernel = HelmholtzKernel(2)

    cse = sym.cse

    sigma_sym = sym.var("sigma")
    sqrt_w = sym.sqrt_jac_q_weight(2)
    inv_sqrt_w_sigma = cse(sigma_sym/sqrt_w)

    # Brakhage-Werner parameter
    alpha = 1j

    # -1 for interior Dirichlet
    # +1 for exterior Dirichlet
    loc_sign = +1

    bdry_op_sym = (-loc_sign*0.5*sigma_sym
            + sqrt_w*(
                alpha*sym.S(kernel, inv_sqrt_w_sigma, k=sym.var("k"))
                - sym.D(kernel, inv_sqrt_w_sigma, k=sym.var("k"))
                ))

    # }}}

    bound_op = bind(qbx, bdry_op_sym)

    # {{{ fix rhs and solve

    mode_nr = 3
    nodes = density_discr.nodes().with_queue(queue)
    angle = cl.clmath.atan2(nodes[1], nodes[0])

    sigma = cl.clmath.cos(mode_nr*angle)

    # }}}

    # {{{ postprocess/visualize

    repr_kwargs = dict(k=sym.var("k"), qbx_forced_limit=+1)

    sym_op = sym.S(kernel, sym.var("sigma"), **repr_kwargs)
    bound_op = bind(qbx, sym_op)

    print("FMM WARM-UP RUN 1: %d elements" % mesh.nelements)
    bound_op(queue, sigma=sigma, k=k)
    print("FMM WARM-UP RUN 2: %d elements" % mesh.nelements)
    bound_op(queue, sigma=sigma, k=k)
    queue.finish()
    print("FMM TIMING RUN: %d elements" % mesh.nelements)

    from time import time
    t_start = time()

    bound_op(queue, sigma=sigma, k=k)
    queue.finish()
    elapsed = time()-t_start

    print("FMM TIMING RUN DONE: %d elements -> %g s"
            % (mesh.nelements, elapsed))

    return (mesh.nelements, elapsed)

    if 0:
        from sumpy.visualization import FieldPlotter
        fplot = FieldPlotter(np.zeros(2), extent=5, npoints=1500)

        targets = cl.array.to_device(queue, fplot.points)

        qbx_tgt_tol = qbx.copy(target_association_tolerance=0.05)

        indicator_qbx = qbx_tgt_tol.copy(
                fmm_level_to_order=lambda lev: 7, qbx_order=2)

        ones_density = density_discr.zeros(queue)
        ones_density.fill(1)
        indicator = bind(
                (indicator_qbx, PointsTarget(targets)),
                sym_op)(
                queue, sigma=ones_density).get()

        qbx_stick_out = qbx.copy(target_stick_out_factor=0.1)
        try:
            fld_in_vol = bind(
                    (qbx_stick_out, PointsTarget(targets)),
                    sym_op)(queue, sigma=sigma, k=k).get()
        except QBXTargetAssociationFailedException as e:
            fplot.write_vtk_file(
                    "failed-targets.vts",
                    [
                        ("failed", e.failed_target_flags.get(queue))
                        ]
                    )
            raise

        #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
        fplot.write_vtk_file(
                "potential-scaling.vts",
                [
                    ("potential", fld_in_vol),
                    ("indicator", indicator)
                    ]
                )
Beispiel #33
0
def test_off_surface_eval_vs_direct(ctx_factory,  do_plot=False):
    logging.basicConfig(level=logging.INFO)

    cl_ctx = ctx_factory()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    # prevent cache 'splosion
    from sympy.core.cache import clear_cache
    clear_cache()

    nelements = 300
    target_order = 8
    qbx_order = 3

    mesh = make_curve_mesh(WobblyCircle.random(8, seed=30),
                np.linspace(0, 1, nelements+1),
                target_order)

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory

    pre_density_discr = Discretization(
            actx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))
    direct_qbx = QBXLayerPotentialSource(
            pre_density_discr, 4*target_order, qbx_order,
            fmm_order=False,
            target_association_tolerance=0.05,
            )
    fmm_qbx = QBXLayerPotentialSource(
            pre_density_discr, 4*target_order, qbx_order,
            fmm_order=qbx_order + 3,
            _expansions_in_tree_have_extent=True,
            target_association_tolerance=0.05,
            )

    fplot = FieldPlotter(np.zeros(2), extent=5, npoints=500)
    from pytential.target import PointsTarget
    ptarget = PointsTarget(fplot.points)
    from sumpy.kernel import LaplaceKernel

    places = GeometryCollection({
        "direct_qbx": direct_qbx,
        "fmm_qbx": fmm_qbx,
        "target": ptarget})

    direct_density_discr = places.get_discretization("direct_qbx")
    fmm_density_discr = places.get_discretization("fmm_qbx")

    from pytential.qbx import QBXTargetAssociationFailedException
    op = sym.D(LaplaceKernel(2), sym.var("sigma"), qbx_forced_limit=None)
    try:
        direct_sigma = direct_density_discr.zeros(actx) + 1
        direct_fld_in_vol = bind(places, op,
                auto_where=("direct_qbx", "target"))(
                        actx, sigma=direct_sigma)
    except QBXTargetAssociationFailedException as e:
        fplot.show_scalar_in_matplotlib(
            actx.to_numpy(actx.thaw(e.failed_target_flags)))
        import matplotlib.pyplot as pt
        pt.show()
        raise

    fmm_sigma = fmm_density_discr.zeros(actx) + 1
    fmm_fld_in_vol = bind(places, op,
            auto_where=("fmm_qbx", "target"))(
                    actx, sigma=fmm_sigma)

    err = actx.np.fabs(fmm_fld_in_vol - direct_fld_in_vol)
    linf_err = actx.to_numpy(err).max()
    print("l_inf error:", linf_err)

    if do_plot:
        #fplot.show_scalar_in_mayavi(0.1*.get(queue))
        fplot.write_vtk_file("potential.vts", [
            ("fmm_fld_in_vol", actx.to_numpy(fmm_fld_in_vol)),
            ("direct_fld_in_vol", actx.to_numpy(direct_fld_in_vol))
            ])

    assert linf_err < 1e-3
Beispiel #34
0
def test_p2e2p(ctx_getter, base_knl, expn_class, order, with_source_derivative):
    #logging.basicConfig(level=logging.INFO)

    from sympy.core.cache import clear_cache
    clear_cache()

    ctx = ctx_getter()
    queue = cl.CommandQueue(ctx)

    np.random.seed(17)

    res = 100
    nsources = 100

    extra_kwargs = {}
    if isinstance(base_knl, HelmholtzKernel):
        if base_knl.allow_evanescent:
            extra_kwargs["k"] = 0.2 * (0.707 + 0.707j)
        else:
            extra_kwargs["k"] = 0.2

    if with_source_derivative:
        knl = DirectionalSourceDerivative(base_knl, "dir_vec")
    else:
        knl = base_knl

    out_kernels = [
            knl,
            AxisTargetDerivative(0, knl),
            ]
    expn = expn_class(knl, order=order)

    from sumpy import P2EFromSingleBox, E2PFromSingleBox, P2P
    p2e = P2EFromSingleBox(ctx, expn, out_kernels)
    e2p = E2PFromSingleBox(ctx, expn, out_kernels)
    p2p = P2P(ctx, out_kernels, exclude_self=False)

    from pytools.convergence import EOCRecorder
    eoc_rec_pot = EOCRecorder()
    eoc_rec_grad_x = EOCRecorder()

    from sumpy.expansion.local import LocalExpansionBase
    if issubclass(expn_class, LocalExpansionBase):
        h_values = [1/5, 1/7, 1/20]
    else:
        h_values = [1/2, 1/3, 1/5]

    center = np.array([2, 1], np.float64)
    sources = (0.7*(-0.5+np.random.rand(knl.dim, nsources).astype(np.float64))
            + center[:, np.newaxis])

    strengths = np.ones(nsources, dtype=np.float64) * (1/nsources)

    source_boxes = np.array([0], dtype=np.int32)
    box_source_starts = np.array([0], dtype=np.int32)
    box_source_counts_nonchild = np.array([nsources], dtype=np.int32)

    extra_source_kwargs = extra_kwargs.copy()
    if with_source_derivative:
        alpha = np.linspace(0, 2*np.pi, nsources, np.float64)
        dir_vec = np.vstack([np.cos(alpha), np.sin(alpha)])
        extra_source_kwargs["dir_vec"] = dir_vec

    from sumpy.visualization import FieldPlotter

    for h in h_values:
        if issubclass(expn_class, LocalExpansionBase):
            loc_center = np.array([5.5, 0.0]) + center
            centers = np.array(loc_center, dtype=np.float64).reshape(knl.dim, 1)
            fp = FieldPlotter(loc_center, extent=h, npoints=res)
        else:
            eval_center = np.array([1/h, 0.0]) + center
            fp = FieldPlotter(eval_center, extent=0.1, npoints=res)
            centers = (
                    np.array([0.0, 0.0], dtype=np.float64).reshape(knl.dim, 1)
                    + center[:, np.newaxis])

        targets = fp.points

        rscale = 0.5  # pick something non-1

        # {{{ apply p2e

        evt, (mpoles,) = p2e(queue,
                source_boxes=source_boxes,
                box_source_starts=box_source_starts,
                box_source_counts_nonchild=box_source_counts_nonchild,
                centers=centers,
                sources=sources,
                strengths=strengths,
                nboxes=1,
                tgt_base_ibox=0,
                rscale=rscale,

                #flags="print_hl_cl",
                out_host=True, **extra_source_kwargs)

        # }}}

        # {{{ apply e2p

        ntargets = targets.shape[-1]

        box_target_starts = np.array([0], dtype=np.int32)
        box_target_counts_nonchild = np.array([ntargets], dtype=np.int32)

        evt, (pot, grad_x, ) = e2p(
                queue,
                src_expansions=mpoles,
                src_base_ibox=0,
                target_boxes=source_boxes,
                box_target_starts=box_target_starts,
                box_target_counts_nonchild=box_target_counts_nonchild,
                centers=centers,
                targets=targets,
                rscale=rscale,

                #flags="print_hl_cl",
                out_host=True, **extra_kwargs)

        # }}}

        # {{{ compute (direct) reference solution

        evt, (pot_direct, grad_x_direct, ) = p2p(
                queue,
                targets, sources, (strengths,),
                out_host=True,
                **extra_source_kwargs)

        err_pot = la.norm((pot - pot_direct)/res**2)
        err_grad_x = la.norm((grad_x - grad_x_direct)/res**2)

        if 1:
            err_pot = err_pot / la.norm((pot_direct)/res**2)
            err_grad_x = err_grad_x / la.norm((grad_x_direct)/res**2)

        if 0:
            import matplotlib.pyplot as pt
            from matplotlib.colors import Normalize

            pt.subplot(131)
            im = fp.show_scalar_in_matplotlib(pot.real)
            im.set_norm(Normalize(vmin=-0.1, vmax=0.1))

            pt.subplot(132)
            im = fp.show_scalar_in_matplotlib(pot_direct.real)
            im.set_norm(Normalize(vmin=-0.1, vmax=0.1))
            pt.colorbar()

            pt.subplot(133)
            im = fp.show_scalar_in_matplotlib(np.log10(1e-15+np.abs(pot-pot_direct)))
            im.set_norm(Normalize(vmin=-6, vmax=1))

            pt.colorbar()
            pt.show()

        # }}}

        eoc_rec_pot.add_data_point(h, err_pot)
        eoc_rec_grad_x.add_data_point(h, err_grad_x)

    print(expn_class, knl, order)
    print("POTENTIAL:")
    print(eoc_rec_pot)
    print("X TARGET DERIVATIVE:")
    print(eoc_rec_grad_x)

    tgt_order = order + 1
    if issubclass(expn_class, LocalExpansionBase):
        tgt_order_grad = tgt_order - 1
        slack = 0.7
        grad_slack = 0.5
    else:
        tgt_order_grad = tgt_order + 1

        slack = 0.5
        grad_slack = 1

        if order <= 2:
            slack += 1
            grad_slack += 1

    if isinstance(knl, DirectionalSourceDerivative):
        slack += 1
        grad_slack += 2

    if isinstance(base_knl, HelmholtzKernel):
        if base_knl.allow_evanescent:
            slack += 0.5
            grad_slack += 0.5

        if issubclass(expn_class, VolumeTaylorMultipoleExpansionBase):
            slack += 0.3
            grad_slack += 0.3

    assert eoc_rec_pot.order_estimate() > tgt_order - slack
    assert eoc_rec_grad_x.order_estimate() > tgt_order_grad - grad_slack
Beispiel #35
0
def test_off_surface_eval_vs_direct(ctx_getter,  do_plot=False):
    logging.basicConfig(level=logging.INFO)

    cl_ctx = ctx_getter()
    queue = cl.CommandQueue(cl_ctx)

    # prevent cache 'splosion
    from sympy.core.cache import clear_cache
    clear_cache()

    nelements = 300
    target_order = 8
    qbx_order = 3

    mesh = make_curve_mesh(WobblyCircle.random(8, seed=30),
                np.linspace(0, 1, nelements+1),
                target_order)

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory

    pre_density_discr = Discretization(
            cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))
    direct_qbx, _ = QBXLayerPotentialSource(
            pre_density_discr, 4*target_order, qbx_order,
            fmm_order=False,
            target_association_tolerance=0.05,
            ).with_refinement()
    fmm_qbx, _ = QBXLayerPotentialSource(
            pre_density_discr, 4*target_order, qbx_order,
            fmm_order=qbx_order + 3,
            _expansions_in_tree_have_extent=True,
            target_association_tolerance=0.05,
            ).with_refinement()

    fplot = FieldPlotter(np.zeros(2), extent=5, npoints=1000)
    from pytential.target import PointsTarget
    ptarget = PointsTarget(fplot.points)
    from sumpy.kernel import LaplaceKernel

    op = sym.D(LaplaceKernel(2), sym.var("sigma"), qbx_forced_limit=None)

    from pytential.qbx import QBXTargetAssociationFailedException
    try:
        direct_density_discr = direct_qbx.density_discr
        direct_sigma = direct_density_discr.zeros(queue) + 1
        direct_fld_in_vol = bind((direct_qbx, ptarget), op)(
                queue, sigma=direct_sigma)

    except QBXTargetAssociationFailedException as e:
        fplot.show_scalar_in_matplotlib(e.failed_target_flags.get(queue))
        import matplotlib.pyplot as pt
        pt.show()
        raise

    fmm_density_discr = fmm_qbx.density_discr
    fmm_sigma = fmm_density_discr.zeros(queue) + 1
    fmm_fld_in_vol = bind((fmm_qbx, ptarget), op)(queue, sigma=fmm_sigma)

    err = cl.clmath.fabs(fmm_fld_in_vol - direct_fld_in_vol)

    linf_err = cl.array.max(err).get()
    print("l_inf error:", linf_err)

    if do_plot:
        #fplot.show_scalar_in_mayavi(0.1*.get(queue))
        fplot.write_vtk_file("potential.vts", [
            ("fmm_fld_in_vol", fmm_fld_in_vol.get(queue)),
            ("direct_fld_in_vol", direct_fld_in_vol.get(queue))
            ])

    assert linf_err < 1e-3
Beispiel #36
0
representation = sym.S(0, sym.var("sigma"))
op = representation

bc = cl.clmath.cos(mode_nr * angle)

bound_op = bind(discr, op)
from pytential.gmres import gmres
gmres_result = gmres(bound_op.scipy_op(queue, "sigma"),
                     bc,
                     tol=1e-14,
                     progress=True,
                     hard_failure=True)

import sys
sys.exit()

sigma = gmres_result.solution

fplot = FieldPlotter(np.zeros(2), extent=5, npoints=500)
from pytential.discretization.target import PointsTarget
fld_in_vol = bind((discr, PointsTarget(fplot.points)),
                  representation)(queue, sigma=sigma).get()

fld_on_bdry = bound_op(queue, sigma=sigma).get()

from mayavi import mlab
fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)

mlab.colorbar()
mlab.show()
Beispiel #37
0
representation = sym.S(0, sym.var("sigma"))
op = representation

bc = cl.clmath.cos(mode_nr*angle)

bound_op = bind(discr, op)
from pytential.gmres import gmres
gmres_result = gmres(
        bound_op.scipy_op(queue, "sigma"),
        bc, tol=1e-14, progress=True,
        hard_failure=True)

import sys
sys.exit()

sigma = gmres_result.solution

fplot = FieldPlotter(np.zeros(2), extent=5, npoints=500)
from pytential.discretization.target import PointsTarget
fld_in_vol = bind(
        (discr, PointsTarget(fplot.points)),
        representation)(queue, sigma=sigma).get()

fld_on_bdry = bound_op(queue, sigma=sigma).get()

from mayavi import mlab
fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)

mlab.colorbar()
mlab.show()
Beispiel #38
0
def timing_run(nx, ny, visualize=False):
    import logging
    logging.basicConfig(level=logging.WARNING)  # INFO for more progress info

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    mesh = make_mesh(nx=nx, ny=ny, visualize=visualize)

    density_discr = Discretization(
        actx, mesh,
        InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order))

    from pytential.qbx import (QBXLayerPotentialSource,
                               QBXTargetAssociationFailedException)
    qbx = QBXLayerPotentialSource(density_discr,
                                  fine_order=bdry_ovsmp_quad_order,
                                  qbx_order=qbx_order,
                                  fmm_order=fmm_order)

    places = {"qbx": qbx}
    if visualize:
        from sumpy.visualization import FieldPlotter
        fplot = FieldPlotter(np.zeros(2), extent=5, npoints=1500)
        targets = PointsTarget(actx.from_numpy(fplot.points))

        places.update({
            "plot-targets":
            targets,
            "qbx-indicator":
            qbx.copy(target_association_tolerance=0.05,
                     fmm_level_to_order=lambda lev: 7,
                     qbx_order=2),
            "qbx-target-assoc":
            qbx.copy(target_association_tolerance=0.1)
        })

    from pytential import GeometryCollection
    places = GeometryCollection(places, auto_where="qbx")
    density_discr = places.get_discretization("qbx")

    # {{{ describe bvp

    from sumpy.kernel import HelmholtzKernel
    kernel = HelmholtzKernel(2)

    sigma_sym = sym.var("sigma")
    sqrt_w = sym.sqrt_jac_q_weight(2)
    inv_sqrt_w_sigma = sym.cse(sigma_sym / sqrt_w)

    # Brakhage-Werner parameter
    alpha = 1j

    # -1 for interior Dirichlet
    # +1 for exterior Dirichlet
    loc_sign = +1

    k_sym = sym.var("k")
    S_sym = sym.S(kernel, inv_sqrt_w_sigma, k=k_sym, qbx_forced_limit=+1)
    D_sym = sym.D(kernel, inv_sqrt_w_sigma, k=k_sym, qbx_forced_limit="avg")
    bdry_op_sym = -loc_sign * 0.5 * sigma_sym + sqrt_w * (alpha * S_sym +
                                                          D_sym)

    # }}}

    bound_op = bind(places, bdry_op_sym)

    # {{{ fix rhs and solve

    mode_nr = 3

    from meshmode.dof_array import thaw
    nodes = thaw(actx, density_discr.nodes())
    angle = actx.np.arctan2(nodes[1], nodes[0])

    sigma = actx.np.cos(mode_nr * angle)

    # }}}

    # {{{ postprocess/visualize

    repr_kwargs = dict(k=sym.var("k"), qbx_forced_limit=+1)

    sym_op = sym.S(kernel, sym.var("sigma"), **repr_kwargs)
    bound_op = bind(places, sym_op)

    print("FMM WARM-UP RUN 1: %5d elements" % mesh.nelements)
    bound_op(actx, sigma=sigma, k=k)
    queue.finish()

    print("FMM WARM-UP RUN 2: %5d elements" % mesh.nelements)
    bound_op(actx, sigma=sigma, k=k)
    queue.finish()

    from time import time
    t_start = time()
    bound_op(actx, sigma=sigma, k=k)
    actx.queue.finish()
    elapsed = time() - t_start

    print("FMM TIMING RUN:    %5d elements -> %g s" %
          (mesh.nelements, elapsed))

    if visualize:
        ones_density = density_discr.zeros(queue)
        ones_density.fill(1)
        indicator = bind(places,
                         sym_op,
                         auto_where=("qbx-indicator", "plot-targets"))(
                             queue, sigma=ones_density).get()

        try:
            fld_in_vol = bind(places,
                              sym_op,
                              auto_where=("qbx-target-assoc",
                                          "plot-targets"))(queue,
                                                           sigma=sigma,
                                                           k=k).get()
        except QBXTargetAssociationFailedException as e:
            fplot.write_vtk_file("scaling-study-failed-targets.vts", [
                ("failed", e.failed_target_flags.get(queue)),
            ])
            raise

        fplot.write_vtk_file("scaling-study-potential.vts", [
            ("potential", fld_in_vol),
            ("indicator", indicator),
        ])

    return (mesh.nelements, elapsed)
Beispiel #39
0
def main():
    # cl.array.to_device(queue, numpy_array)
    from meshmode.mesh.io import generate_gmsh, FileSource
    mesh = generate_gmsh(
            FileSource("ellipsoid.step"), 2, order=2,
            other_options=["-string", "Mesh.CharacteristicLengthMax = %g;" % h])

    from meshmode.mesh.processing import perform_flips
    # Flip elements--gmsh generates inside-out geometry.
    mesh = perform_flips(mesh, np.ones(mesh.nelements))

    print("%d elements" % mesh.nelements)

    from meshmode.mesh.processing import find_bounding_box
    bbox_min, bbox_max = find_bounding_box(mesh)
    bbox_center = 0.5*(bbox_min+bbox_max)
    bbox_size = max(bbox_max-bbox_min) / 2

    logger.info("%d elements" % mesh.nelements)

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory

    density_discr = Discretization(
            cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))

    qbx = QBXLayerPotentialSource(density_discr, 4*target_order, qbx_order,
            fmm_order=qbx_order + 10, fmm_backend="fmmlib")

    from pytential.symbolic.pde.maxwell import MuellerAugmentedMFIEOperator
    pde_op = MuellerAugmentedMFIEOperator(
            omega=0.4,
            epss=[1.4, 1.0],
            mus=[1.2, 1.0],
            )
    from pytential import bind, sym

    unk = pde_op.make_unknown("sigma")
    sym_operator = pde_op.operator(unk)
    sym_rhs = pde_op.rhs(
            sym.make_sym_vector("Einc", 3),
            sym.make_sym_vector("Hinc", 3))
    sym_repr = pde_op.representation(0, unk)

    if 1:
        expr = sym_repr
        print(sym.pretty(expr))

        print("#"*80)
        from pytential.target import PointsTarget

        tgt_points=np.zeros((3,1))
        tgt_points[0,0] = 100
        tgt_points[1,0] = -200
        tgt_points[2,0] = 300

        bound_op = bind((qbx, PointsTarget(tgt_points)), expr)
        print(bound_op.code)

    if 1:

        def green3e(x,y,z,source,strength,k):
        # electric field corresponding to dyadic green's function
        # due to monochromatic electric dipole located at "source".
        # "strength" is the the intensity of the dipole.
        #  E = (I + Hess)(exp(ikr)/r) dot (strength)
        #
            dx = x - source[0]
            dy = y - source[1]
            dz = z - source[2]
            rr = np.sqrt(dx**2 + dy**2 + dz**2)

            fout = np.exp(1j*k*rr)/rr
            evec = fout*strength
            qmat = np.zeros((3,3),dtype=np.complex128)

            qmat[0,0]=(2*dx**2-dy**2-dz**2)*(1-1j*k*rr)
            qmat[1,1]=(2*dy**2-dz**2-dx**2)*(1-1j*k*rr)
            qmat[2,2]=(2*dz**2-dx**2-dy**2)*(1-1j*k*rr)

            qmat[0,0]=qmat[0,0]+(-k**2*dx**2*rr**2)
            qmat[1,1]=qmat[1,1]+(-k**2*dy**2*rr**2)
            qmat[2,2]=qmat[2,2]+(-k**2*dz**2*rr**2)

            qmat[0,1]=(3-k**2*rr**2-3*1j*k*rr)*(dx*dy)
            qmat[1,2]=(3-k**2*rr**2-3*1j*k*rr)*(dy*dz)
            qmat[2,0]=(3-k**2*rr**2-3*1j*k*rr)*(dz*dx)

            qmat[1,0]=qmat[0,1]
            qmat[2,1]=qmat[1,2]
            qmat[0,2]=qmat[2,0]

            fout=np.exp(1j*k*rr)/rr**5/k**2

            fvec = fout*np.dot(qmat,strength)
            evec = evec + fvec
            return evec

        def green3m(x,y,z,source,strength,k):
        # magnetic field corresponding to dyadic green's function
        # due to monochromatic electric dipole located at "source".
        # "strength" is the the intensity of the dipole.
        #  H = curl((I + Hess)(exp(ikr)/r) dot (strength)) = 
        #  strength \cross \grad (exp(ikr)/r)
        #
            dx = x - source[0]
            dy = y - source[1]
            dz = z - source[2]
            rr = np.sqrt(dx**2 + dy**2 + dz**2)

            fout=(1-1j*k*rr)*np.exp(1j*k*rr)/rr**3
            fvec = np.zeros(3,dtype=np.complex128)
            fvec[0] = fout*dx
            fvec[1] = fout*dy
            fvec[2] = fout*dz

            hvec = np.cross(strength,fvec)

            return hvec

        def dipole3e(x,y,z,source,strength,k):
        #
        #  evalaute electric and magnetic field due
        #  to monochromatic electric dipole located at "source"
        #  with intensity "strength"

            evec = green3e(x,y,z,source,strength,k)
            evec = evec*1j*k
            hvec = green3m(x,y,z,source,strength,k)
            return evec,hvec
            
        def dipole3m(x,y,z,source,strength,k):
        #
        #  evalaute electric and magnetic field due
        #  to monochromatic magnetic dipole located at "source"
        #  with intensity "strength"
            evec = green3m(x,y,z,source,strength,k)
            hvec = green3e(x,y,z,source,strength,k)
            hvec = -hvec*1j*k
            return evec,hvec
            

        def dipole3eall(x,y,z,sources,strengths,k):
            ns = len(strengths)
            evec = np.zeros(3,dtype=np.complex128)
            hvec = np.zeros(3,dtype=np.complex128)

            for i in range(ns):
                evect,hvect = dipole3e(x,y,z,sources[i],strengths[i],k)
                evec = evec + evect
                hvec = hvec + hvect

        nodes = density_discr.nodes().with_queue(queue).get()
        source = [0.01,-0.03,0.02]
#        source = cl.array.to_device(queue,np.zeros(3))
#        source[0] = 0.01
#        source[1] =-0.03
#        source[2] = 0.02
        strength = np.ones(3)
       
#        evec = cl.array.to_device(queue,np.zeros((3,len(nodes[0])),dtype=np.complex128))
#        hvec = cl.array.to_device(queue,np.zeros((3,len(nodes[0])),dtype=np.complex128))

        evec = np.zeros((3,len(nodes[0])),dtype=np.complex128)
        hvec = np.zeros((3,len(nodes[0])),dtype=np.complex128)
        for i in range(len(nodes[0])):
            evec[:,i],hvec[:,i] = dipole3e(nodes[0][i],nodes[1][i],nodes[2][i],source,strength,k)
        print(np.shape(hvec))
        print(type(evec))
        print(type(hvec))

        evec = cl.array.to_device(queue,evec)
        hvec = cl.array.to_device(queue,hvec)

        bvp_rhs = bind(qbx, sym_rhs)(queue,Einc=evec,Hinc=hvec)
        print(np.shape(bvp_rhs))
        print(type(bvp_rhs))
#        print(bvp_rhs)
        1/-1

        bound_op = bind(qbx, sym_operator)

        from pytential.solve import gmres
        if 0:
            gmres_result = gmres(
                bound_op.scipy_op(queue, "sigma", dtype=np.complex128, k=k),
                bvp_rhs, tol=1e-8, progress=True,
                stall_iterations=0,
                hard_failure=True)

            sigma = gmres_result.solution

        fld_at_tgt = bind((qbx, PointsTarget(tgt_points)), sym_repr)(queue,
        sigma=bvp_rhs,k=k)
        fld_at_tgt = np.array([
            fi.get() for fi in fld_at_tgt
            ])
        print(fld_at_tgt)
        1/0

    # }}}

    #mlab.figure(bgcolor=(1, 1, 1))
    if 1:
        from meshmode.discretization.visualization import make_visualizer
        bdry_vis = make_visualizer(queue, density_discr, target_order)

        bdry_normals = bind(density_discr, sym.normal(3))(queue)\
                .as_vector(dtype=object)

        bdry_vis.write_vtk_file("source.vtu", [
            ("sigma", sigma),
            ("bdry_normals", bdry_normals),
            ])

        fplot = FieldPlotter(bbox_center, extent=2*bbox_size, npoints=(150, 150, 1))

        qbx_tgt_tol = qbx.copy(target_association_tolerance=0.1)
        from pytential.target import PointsTarget
        from pytential.qbx import QBXTargetAssociationFailedException

        rho_sym = sym.var("rho")

        try:
            fld_in_vol = bind(
                    (qbx_tgt_tol, PointsTarget(fplot.points)),
                    sym.make_obj_array([
                        sym.S(pde_op.kernel, rho_sym, k=sym.var("k"),
                            qbx_forced_limit=None),
                        sym.d_dx(3, sym.S(pde_op.kernel, rho_sym, k=sym.var("k"),
                            qbx_forced_limit=None)),
                        sym.d_dy(3, sym.S(pde_op.kernel, rho_sym, k=sym.var("k"),
                            qbx_forced_limit=None)),
                        sym.d_dz(3, sym.S(pde_op.kernel, rho_sym, k=sym.var("k"),
                            qbx_forced_limit=None)),
                        ])
                    )(queue, jt=jt, rho=rho, k=k)
        except QBXTargetAssociationFailedException as e:
            fplot.write_vtk_file(
                    "failed-targets.vts",
                    [
                        ("failed_targets", e.failed_target_flags.get(queue))
                        ])
            raise

        fld_in_vol = sym.make_obj_array(
            [fiv.get() for fiv in fld_in_vol])

        #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
        fplot.write_vtk_file(
                "potential.vts",
                [
                    ("potential", fld_in_vol[0]),
                    ("grad", fld_in_vol[1:]),
                    ]
                )
Beispiel #40
0
def draw_pot_figure(aspect_ratio,
        nsrc=100, novsmp=None, helmholtz_k=0,
        what_operator="S",
        what_operator_lpot=None,
        order=4,
        ovsmp_center_exp=0.66,
        force_center_side=None):

    import logging
    logging.basicConfig(level=logging.INFO)

    if novsmp is None:
        novsmp = 4*nsrc

    if what_operator_lpot is None:
        what_operator_lpot = what_operator

    ctx = cl.create_some_context()
    queue = cl.CommandQueue(ctx)

    # {{{ make plot targets

    center = np.asarray([0, 0], dtype=np.float64)
    from sumpy.visualization import FieldPlotter
    fp = FieldPlotter(center, npoints=1000, extent=6)

    # }}}

    # {{{ make p2p kernel calculator

    from sumpy.p2p import P2P
    from sumpy.kernel import LaplaceKernel, HelmholtzKernel
    from sumpy.expansion.local import H2DLocalExpansion, LineTaylorLocalExpansion
    if helmholtz_k:
        if isinstance(helmholtz_k, complex):
            knl = HelmholtzKernel(2, allow_evanescent=True)
            expn_class = H2DLocalExpansion
            knl_kwargs = {"k": helmholtz_k}
        else:
            knl = HelmholtzKernel(2)
            expn_class = H2DLocalExpansion
            knl_kwargs = {"k": helmholtz_k}

    else:
        knl = LaplaceKernel(2)
        expn_class = LineTaylorLocalExpansion
        knl_kwargs = {}

    vol_knl = process_kernel(knl, what_operator)
    p2p = P2P(ctx, [vol_knl], exclude_self=False,
            value_dtypes=np.complex128)

    lpot_knl = process_kernel(knl, what_operator_lpot)

    from sumpy.qbx import LayerPotential
    lpot = LayerPotential(ctx, [
        expn_class(lpot_knl, order=order)],
            value_dtypes=np.complex128)

    # }}}

    # {{{ set up geometry

    # r,a,b match the corresponding letters from G. J. Rodin and O. Steinbach,
    # Boundary Element Preconditioners for problems defined on slender domains.
    # http://dx.doi.org/10.1137/S1064827500372067

    a = 1
    b = 1/aspect_ratio

    def map_to_curve(t):
        t = t*(2*np.pi)

        x = a*np.cos(t)
        y = b*np.sin(t)

        w = (np.zeros_like(t)+1)/len(t)

        return x, y, w

    from curve import CurveGrid

    native_t = np.linspace(0, 1, nsrc, endpoint=False)
    native_x, native_y, native_weights = map_to_curve(native_t)
    native_curve = CurveGrid(native_x, native_y)

    ovsmp_t = np.linspace(0, 1, novsmp, endpoint=False)
    ovsmp_x, ovsmp_y, ovsmp_weights = map_to_curve(ovsmp_t)
    ovsmp_curve = CurveGrid(ovsmp_x, ovsmp_y)

    curve_len = np.sum(ovsmp_weights * ovsmp_curve.speed)
    hovsmp = curve_len/novsmp
    center_dist = 5*hovsmp

    if force_center_side is not None:
        center_side = force_center_side*np.ones(len(native_curve))
    else:
        center_side = -np.sign(native_curve.mean_curvature)

    centers = (native_curve.pos
            + center_side[:, np.newaxis]
            * center_dist*native_curve.normal)

    #native_curve.plot()
    #pt.show()

    volpot_kwargs = knl_kwargs.copy()
    lpot_kwargs = knl_kwargs.copy()

    if what_operator == "D":
        volpot_kwargs["src_derivative_dir"] = native_curve.normal

    if what_operator_lpot == "D":
        lpot_kwargs["src_derivative_dir"] = ovsmp_curve.normal

    if what_operator_lpot == "S'":
        lpot_kwargs["tgt_derivative_dir"] = native_curve.normal

    # }}}

    if 0:
        # {{{ build matrix

        from fourier import make_fourier_interp_matrix
        fim = make_fourier_interp_matrix(novsmp, nsrc)
        from sumpy.tools import build_matrix
        from scipy.sparse.linalg import LinearOperator

        def apply_lpot(x):
            xovsmp = np.dot(fim, x)
            evt, (y,) = lpot(queue, native_curve.pos, ovsmp_curve.pos,
                    centers,
                    [xovsmp * ovsmp_curve.speed * ovsmp_weights],
                    expansion_radii=np.ones(centers.shape[1]),
                    **lpot_kwargs)

            return y

        op = LinearOperator((nsrc, nsrc), apply_lpot)
        mat = build_matrix(op, dtype=np.complex128)
        w, v = la.eig(mat)
        pt.plot(w.real, "o-")
        #import sys; sys.exit(0)
        return

        # }}}

    # {{{ compute potentials

    mode_nr = 0
    density = np.cos(mode_nr*2*np.pi*native_t).astype(np.complex128)
    ovsmp_density = np.cos(mode_nr*2*np.pi*ovsmp_t).astype(np.complex128)
    evt, (vol_pot,) = p2p(queue, fp.points, native_curve.pos,
            [native_curve.speed*native_weights*density], **volpot_kwargs)

    evt, (curve_pot,) = lpot(queue, native_curve.pos, ovsmp_curve.pos,
            centers,
            [ovsmp_density * ovsmp_curve.speed * ovsmp_weights],
            expansion_radii=np.ones(centers.shape[1]),
            **lpot_kwargs)

    # }}}

    if 0:
        # {{{ plot on-surface potential in 2D

        pt.plot(curve_pot, label="pot")
        pt.plot(density, label="dens")
        pt.legend()
        pt.show()

        # }}}

    fp.write_vtk_file("potential.vts", [
        ("potential", vol_pot.real)
        ])

    if 0:
        # {{{ 2D false-color plot

        pt.clf()
        plotval = np.log10(1e-20+np.abs(vol_pot))
        im = fp.show_scalar_in_matplotlib(plotval.real)
        from matplotlib.colors import Normalize
        im.set_norm(Normalize(vmin=-2, vmax=1))

        src = native_curve.pos
        pt.plot(src[:, 0], src[:, 1], "o-k")
        # close the curve
        pt.plot(src[-1::-len(src)+1, 0], src[-1::-len(src)+1, 1], "o-k")

        #pt.gca().set_aspect("equal", "datalim")
        cb = pt.colorbar(shrink=0.9)
        cb.set_label(r"$\log_{10}(\mathdefault{Error})$")
        #from matplotlib.ticker import NullFormatter
        #pt.gca().xaxis.set_major_formatter(NullFormatter())
        #pt.gca().yaxis.set_major_formatter(NullFormatter())
        fp.set_matplotlib_limits()

        # }}}
    else:
        # {{{ 3D plots


        plotval_vol = vol_pot.real
        plotval_c = curve_pot.real

        scale = 1

        if 0:
            # crop singularities--doesn't work very well
            neighbors = [
                    np.roll(plotval_vol, 3, 0),
                    np.roll(plotval_vol, -3, 0),
                    np.roll(plotval_vol, 6, 0),
                    np.roll(plotval_vol, -6, 0),
                    ]
            avg = np.average(np.abs(plotval_vol))
            outlier_flag = sum(
                    np.abs(plotval_vol-nb) for nb in neighbors) > avg
            plotval_vol[outlier_flag] = sum(
                    nb[outlier_flag] for nb in neighbors)/len(neighbors)

        fp.show_scalar_in_mayavi(scale*plotval_vol, max_val=1)
        from mayavi import mlab
        mlab.colorbar()
        if 1:
            mlab.points3d(
                    native_curve.pos[0],
                    native_curve.pos[1],
                    scale*plotval_c, scale_factor=0.02)
        mlab.show()
Beispiel #41
0
def test_sumpy_fmm(ctx_getter, knl, local_expn_class, mpole_expn_class):
    logging.basicConfig(level=logging.INFO)

    ctx = ctx_getter()
    queue = cl.CommandQueue(ctx)

    nsources = 1000
    ntargets = 300
    dtype = np.float64

    from boxtree.tools import (make_normal_particle_array as p_normal)

    sources = p_normal(queue, nsources, knl.dim, dtype, seed=15)
    if 1:
        offset = np.zeros(knl.dim)
        offset[0] = 0.1

        targets = (p_normal(queue, ntargets, knl.dim, dtype, seed=18) + offset)

        del offset
    else:
        from sumpy.visualization import FieldPlotter
        fp = FieldPlotter(np.array([0.5, 0]), extent=3, npoints=200)
        from pytools.obj_array import make_obj_array
        targets = make_obj_array([fp.points[i] for i in range(knl.dim)])

    from boxtree import TreeBuilder
    tb = TreeBuilder(ctx)

    tree, _ = tb(queue,
                 sources,
                 targets=targets,
                 max_particles_in_box=30,
                 debug=True)

    from boxtree.traversal import FMMTraversalBuilder
    tbuild = FMMTraversalBuilder(ctx)
    trav, _ = tbuild(queue, tree, debug=True)

    # {{{ plot tree

    if 0:
        host_tree = tree.get()
        host_trav = trav.get()

        if 1:
            print("src_box", host_tree.find_box_nr_for_source(403))
            print("tgt_box", host_tree.find_box_nr_for_target(28))
            print(list(host_trav.target_or_target_parent_boxes).index(37))
            print(host_trav.get_box_list("sep_bigger", 22))

        from boxtree.visualization import TreePlotter
        plotter = TreePlotter(host_tree)
        plotter.draw_tree(fill=False, edgecolor="black", zorder=10)
        plotter.set_bounding_box()
        plotter.draw_box_numbers()

        import matplotlib.pyplot as pt
        pt.show()

    # }}}

    from pyopencl.clrandom import PhiloxGenerator
    rng = PhiloxGenerator(ctx, seed=44)
    weights = rng.uniform(queue, nsources, dtype=np.float64)

    logger.info("computing direct (reference) result")

    from pytools.convergence import PConvergenceVerifier

    pconv_verifier = PConvergenceVerifier()

    extra_kwargs = {}
    dtype = np.float64
    order_values = [1, 2, 3]
    if isinstance(knl, HelmholtzKernel):
        extra_kwargs["k"] = 0.05
        dtype = np.complex128

        if knl.dim == 3:
            order_values = [1, 2]
        elif knl.dim == 2 and issubclass(local_expn_class, H2DLocalExpansion):
            order_values = [10, 12]

    elif isinstance(knl, YukawaKernel):
        extra_kwargs["lam"] = 2
        dtype = np.complex128

        if knl.dim == 3:
            order_values = [1, 2]
        elif knl.dim == 2 and issubclass(local_expn_class, Y2DLocalExpansion):
            order_values = [10, 12]

    from functools import partial
    for order in order_values:
        out_kernels = [knl]

        from sumpy.fmm import SumpyExpansionWranglerCodeContainer
        wcc = SumpyExpansionWranglerCodeContainer(
            ctx, partial(mpole_expn_class, knl),
            partial(local_expn_class, knl), out_kernels)
        wrangler = wcc.get_wrangler(
            queue,
            tree,
            dtype,
            fmm_level_to_order=lambda kernel, kernel_args, tree, lev: order,
            kernel_extra_kwargs=extra_kwargs)

        from boxtree.fmm import drive_fmm

        pot, = drive_fmm(trav, wrangler, weights)

        from sumpy import P2P
        p2p = P2P(ctx, out_kernels, exclude_self=False)
        evt, (ref_pot, ) = p2p(queue, targets, sources, (weights, ),
                               **extra_kwargs)

        pot = pot.get()
        ref_pot = ref_pot.get()

        rel_err = la.norm(pot - ref_pot, np.inf) / la.norm(ref_pot, np.inf)
        logger.info("order %d -> relative l2 error: %g" % (order, rel_err))

        pconv_verifier.add_data_point(order, rel_err)

    print(pconv_verifier)
    pconv_verifier()
Beispiel #42
0
def run_int_eq_test(
        cl_ctx, queue, curve_f, nelements, qbx_order, bc_type, loc_sign, k,
        target_order, source_order):

    mesh = make_curve_mesh(curve_f,
            np.linspace(0, 1, nelements+1),
            target_order)

    if 0:
        from pytential.visualization import show_mesh
        show_mesh(mesh)

        pt.gca().set_aspect("equal")
        pt.show()

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory
    density_discr = Discretization(
            cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))

    if source_order is None:
        source_order = 4*target_order

    qbx = QBXLayerPotentialSource(
            density_discr, fine_order=source_order, qbx_order=qbx_order,
            # Don't use FMM for now
            fmm_order=False)

    # {{{ set up operator

    from pytential.symbolic.pde.scalar import (
            DirichletOperator,
            NeumannOperator)

    from sumpy.kernel import LaplaceKernel, HelmholtzKernel, AxisTargetDerivative
    if k:
        knl = HelmholtzKernel(2)
        knl_kwargs = {"k": k}
    else:
        knl = LaplaceKernel(2)
        knl_kwargs = {}

    if knl.is_complex_valued:
        dtype = np.complex128
    else:
        dtype = np.float64

    if bc_type == "dirichlet":
        op = DirichletOperator((knl, knl_kwargs), loc_sign, use_l2_weighting=True)
    elif bc_type == "neumann":
        op = NeumannOperator((knl, knl_kwargs), loc_sign, use_l2_weighting=True,
                 use_improved_operator=False)
    else:
        assert False

    op_u = op.operator(sym.var("u"))

    # }}}

    # {{{ set up test data

    inner_radius = 0.1
    outer_radius = 2

    if loc_sign < 0:
        test_src_geo_radius = outer_radius
        test_tgt_geo_radius = inner_radius
    else:
        test_src_geo_radius = inner_radius
        test_tgt_geo_radius = outer_radius

    point_sources = make_circular_point_group(10, test_src_geo_radius,
            func=lambda x: x**1.5)
    test_targets = make_circular_point_group(20, test_tgt_geo_radius)

    np.random.seed(22)
    source_charges = np.random.randn(point_sources.shape[1])
    source_charges[-1] = -np.sum(source_charges[:-1])
    source_charges = source_charges.astype(dtype)
    assert np.sum(source_charges) < 1e-15

    # }}}

    if 0:
        # show geometry, centers, normals
        nodes_h = density_discr.nodes().get(queue=queue)
        pt.plot(nodes_h[0], nodes_h[1], "x-")
        normal = bind(density_discr, sym.normal())(queue).as_vector(np.object)
        pt.quiver(nodes_h[0], nodes_h[1], normal[0].get(queue), normal[1].get(queue))
        pt.gca().set_aspect("equal")
        pt.show()

    # {{{ establish BCs

    from sumpy.p2p import P2P
    pot_p2p = P2P(cl_ctx,
            [knl], exclude_self=False, value_dtypes=dtype)

    evt, (test_direct,) = pot_p2p(
            queue, test_targets, point_sources, [source_charges],
            out_host=False, **knl_kwargs)

    nodes = density_discr.nodes()

    evt, (src_pot,) = pot_p2p(
            queue, nodes, point_sources, [source_charges],
            **knl_kwargs)

    grad_p2p = P2P(cl_ctx,
            [AxisTargetDerivative(0, knl), AxisTargetDerivative(1, knl)],
            exclude_self=False, value_dtypes=dtype)
    evt, (src_grad0, src_grad1) = grad_p2p(
            queue, nodes, point_sources, [source_charges],
            **knl_kwargs)

    if bc_type == "dirichlet":
        bc = src_pot
    elif bc_type == "neumann":
        normal = bind(density_discr, sym.normal())(queue).as_vector(np.object)
        bc = (src_grad0*normal[0] + src_grad1*normal[1])

    # }}}

    # {{{ solve

    bound_op = bind(qbx, op_u)

    rhs = bind(density_discr, op.prepare_rhs(sym.var("bc")))(queue, bc=bc)

    from pytential.solve import gmres
    gmres_result = gmres(
            bound_op.scipy_op(queue, "u", k=k),
            rhs, tol=1e-14, progress=True,
            hard_failure=False)

    u = gmres_result.solution
    print("gmres state:", gmres_result.state)

    if 0:
        # {{{ build matrix for spectrum check

        from sumpy.tools import build_matrix
        mat = build_matrix(bound_op.scipy_op("u"))
        w, v = la.eig(mat)
        if 0:
            pt.imshow(np.log10(1e-20+np.abs(mat)))
            pt.colorbar()
            pt.show()

        #assert abs(s[-1]) < 1e-13, "h
        #assert abs(s[-2]) > 1e-7
        #from pudb import set_trace; set_trace()

        # }}}

    # }}}

    # {{{ error check

    from pytential.target import PointsTarget

    bound_tgt_op = bind((qbx, PointsTarget(test_targets)),
            op.representation(sym.var("u")))

    test_via_bdry = bound_tgt_op(queue, u=u, k=k)

    err = test_direct-test_via_bdry

    err = err.get()
    test_direct = test_direct.get()
    test_via_bdry = test_via_bdry.get()

    # {{{ remove effect of net source charge

    if k == 0 and bc_type == "neumann" and loc_sign == -1:
        # remove constant offset in interior Laplace Neumann error
        tgt_ones = np.ones_like(test_direct)
        tgt_ones = tgt_ones/la.norm(tgt_ones)
        err = err - np.vdot(tgt_ones, err)*tgt_ones

    # }}}

    rel_err_2 = la.norm(err)/la.norm(test_direct)
    rel_err_inf = la.norm(err, np.inf)/la.norm(test_direct, np.inf)

    # }}}

    print("rel_err_2: %g rel_err_inf: %g" % (rel_err_2, rel_err_inf))

    # {{{ test tangential derivative

    bound_t_deriv_op = bind(qbx,
            op.representation(
                sym.var("u"), map_potentials=sym.tangential_derivative,
                qbx_forced_limit=loc_sign))

    #print(bound_t_deriv_op.code)

    tang_deriv_from_src = bound_t_deriv_op(queue, u=u).as_scalar().get()

    tangent = bind(
            density_discr,
            sym.pseudoscalar()/sym.area_element())(queue).as_vector(np.object)

    tang_deriv_ref = (src_grad0 * tangent[0] + src_grad1 * tangent[1]).get()

    if 0:
        pt.plot(tang_deriv_ref.real)
        pt.plot(tang_deriv_from_src.real)
        pt.show()

    td_err = tang_deriv_from_src - tang_deriv_ref

    rel_td_err_inf = la.norm(td_err, np.inf)/la.norm(tang_deriv_ref, np.inf)

    print("rel_td_err_inf: %g" % rel_td_err_inf)

    # }}}

    # {{{ plotting

    if 0:
        fplot = FieldPlotter(np.zeros(2),
                extent=1.25*2*max(test_src_geo_radius, test_tgt_geo_radius),
                npoints=200)

        #pt.plot(u)
        #pt.show()

        evt, (fld_from_src,) = pot_p2p(
                queue, fplot.points, point_sources, [source_charges],
                **knl_kwargs)
        fld_from_bdry = bind(
                (qbx, PointsTarget(fplot.points)),
                op.representation(sym.var("u"))
                )(queue, u=u, k=k)
        fld_from_src = fld_from_src.get()
        fld_from_bdry = fld_from_bdry.get()

        nodes = density_discr.nodes().get(queue=queue)

        def prep():
            pt.plot(point_sources[0], point_sources[1], "o",
                    label="Monopole 'Point Charges'")
            pt.plot(test_targets[0], test_targets[1], "v",
                    label="Observation Points")
            pt.plot(nodes[0], nodes[1], "k-",
                    label=r"$\Gamma$")

        from matplotlib.cm import get_cmap
        cmap = get_cmap()
        cmap._init()
        if 0:
            cmap._lut[(cmap.N*99)//100:, -1] = 0  # make last percent transparent?

        prep()
        if 1:
            pt.subplot(131)
            pt.title("Field error (loc_sign=%s)" % loc_sign)
            log_err = np.log10(1e-20+np.abs(fld_from_src-fld_from_bdry))
            log_err = np.minimum(-3, log_err)
            fplot.show_scalar_in_matplotlib(log_err, cmap=cmap)

            #from matplotlib.colors import Normalize
            #im.set_norm(Normalize(vmin=-6, vmax=1))

            cb = pt.colorbar(shrink=0.9)
            cb.set_label(r"$\log_{10}(\mathdefault{Error})$")

        if 1:
            pt.subplot(132)
            prep()
            pt.title("Source Field")
            fplot.show_scalar_in_matplotlib(
                    fld_from_src.real, max_val=3)

            pt.colorbar(shrink=0.9)
        if 1:
            pt.subplot(133)
            prep()
            pt.title("Solved Field")
            fplot.show_scalar_in_matplotlib(
                    fld_from_bdry.real, max_val=3)

            pt.colorbar(shrink=0.9)

        # total field
        #fplot.show_scalar_in_matplotlib(
        #fld_from_src.real+fld_from_bdry.real, max_val=0.1)

        #pt.colorbar()

        pt.legend(loc="best", prop=dict(size=15))
        from matplotlib.ticker import NullFormatter
        pt.gca().xaxis.set_major_formatter(NullFormatter())
        pt.gca().yaxis.set_major_formatter(NullFormatter())

        pt.gca().set_aspect("equal")

        if 0:
            border_factor_top = 0.9
            border_factor = 0.3

            xl, xh = pt.xlim()
            xhsize = 0.5*(xh-xl)
            pt.xlim(xl-border_factor*xhsize, xh+border_factor*xhsize)

            yl, yh = pt.ylim()
            yhsize = 0.5*(yh-yl)
            pt.ylim(yl-border_factor_top*yhsize, yh+border_factor*yhsize)

        #pt.savefig("helmholtz.pdf", dpi=600)
        pt.show()

        # }}}

    class Result(Record):
        pass

    return Result(
            rel_err_2=rel_err_2,
            rel_err_inf=rel_err_inf,
            rel_td_err_inf=rel_td_err_inf,
            gmres_result=gmres_result)
Beispiel #43
0
def test_translations(ctx_factory, knl, local_expn_class, mpole_expn_class):
    logging.basicConfig(level=logging.INFO)

    from sympy.core.cache import clear_cache
    clear_cache()

    ctx = ctx_factory()
    queue = cl.CommandQueue(ctx)

    np.random.seed(17)

    res = 20
    nsources = 15

    out_kernels = [knl]

    extra_kwargs = {}
    if isinstance(knl, HelmholtzKernel):
        extra_kwargs["k"] = 0.05
    if isinstance(knl, StokesletKernel):
        extra_kwargs["mu"] = 0.05

    # Just to make sure things also work away from the origin
    origin = np.array([2, 1, 0][:knl.dim], np.float64)
    sources = (0.7 *
               (-0.5 + np.random.rand(knl.dim, nsources).astype(np.float64)) +
               origin[:, np.newaxis])
    strengths = np.ones(nsources, dtype=np.float64) * (1 / nsources)

    pconv_verifier_p2m2p = PConvergenceVerifier()
    pconv_verifier_p2m2m2p = PConvergenceVerifier()
    pconv_verifier_p2m2m2l2p = PConvergenceVerifier()
    pconv_verifier_full = PConvergenceVerifier()

    from sumpy.visualization import FieldPlotter

    eval_offset = np.array([5.5, 0.0, 0][:knl.dim])

    centers = (
        np.array(
            [
                # box 0: particles, first mpole here
                [0, 0, 0][:knl.dim],

                # box 1: second mpole here
                np.array([-0.2, 0.1, 0][:knl.dim], np.float64),

                # box 2: first local here
                eval_offset + np.array([0.3, -0.2, 0][:knl.dim], np.float64),

                # box 3: second local and eval here
                eval_offset
            ],
            dtype=np.float64) + origin).T.copy()

    del eval_offset

    from sumpy.expansion import VolumeTaylorExpansionBase

    if isinstance(knl, HelmholtzKernel) and \
           issubclass(local_expn_class, VolumeTaylorExpansionBase):
        # FIXME: Embarrassing--but we run out of memory for higher orders.
        orders = [2, 3]
    else:
        orders = [2, 3, 4]
    nboxes = centers.shape[-1]

    def eval_at(e2p, source_box_nr, rscale):
        e2p_target_boxes = np.array([source_box_nr], dtype=np.int32)

        # These are indexed by global box numbers.
        e2p_box_target_starts = np.array([0, 0, 0, 0], dtype=np.int32)
        e2p_box_target_counts_nonchild = np.array([0, 0, 0, 0], dtype=np.int32)
        e2p_box_target_counts_nonchild[source_box_nr] = ntargets

        evt, (pot, ) = e2p(
            queue,
            src_expansions=mpoles,
            src_base_ibox=0,
            target_boxes=e2p_target_boxes,
            box_target_starts=e2p_box_target_starts,
            box_target_counts_nonchild=e2p_box_target_counts_nonchild,
            centers=centers,
            targets=targets,
            rscale=rscale,
            out_host=True,
            **extra_kwargs)

        return pot

    for order in orders:
        m_expn = mpole_expn_class(knl, order=order)
        l_expn = local_expn_class(knl, order=order)

        from sumpy import P2EFromSingleBox, E2PFromSingleBox, P2P, E2EFromCSR
        p2m = P2EFromSingleBox(ctx, m_expn)
        m2m = E2EFromCSR(ctx, m_expn, m_expn)
        m2p = E2PFromSingleBox(ctx, m_expn, out_kernels)
        m2l = E2EFromCSR(ctx, m_expn, l_expn)
        l2l = E2EFromCSR(ctx, l_expn, l_expn)
        l2p = E2PFromSingleBox(ctx, l_expn, out_kernels)
        p2p = P2P(ctx, out_kernels, exclude_self=False)

        fp = FieldPlotter(centers[:, -1], extent=0.3, npoints=res)
        targets = fp.points

        # {{{ compute (direct) reference solution

        evt, (pot_direct, ) = p2p(queue,
                                  targets,
                                  sources, (strengths, ),
                                  out_host=True,
                                  **extra_kwargs)

        # }}}

        m1_rscale = 0.5
        m2_rscale = 0.25
        l1_rscale = 0.5
        l2_rscale = 0.25

        # {{{ apply P2M

        p2m_source_boxes = np.array([0], dtype=np.int32)

        # These are indexed by global box numbers.
        p2m_box_source_starts = np.array([0, 0, 0, 0], dtype=np.int32)
        p2m_box_source_counts_nonchild = np.array([nsources, 0, 0, 0],
                                                  dtype=np.int32)

        evt, (mpoles, ) = p2m(
            queue,
            source_boxes=p2m_source_boxes,
            box_source_starts=p2m_box_source_starts,
            box_source_counts_nonchild=p2m_box_source_counts_nonchild,
            centers=centers,
            sources=sources,
            strengths=(strengths, ),
            nboxes=nboxes,
            rscale=m1_rscale,
            tgt_base_ibox=0,

            #flags="print_hl_wrapper",
            out_host=True,
            **extra_kwargs)

        # }}}

        ntargets = targets.shape[-1]

        pot = eval_at(m2p, 0, m1_rscale)

        err = la.norm((pot - pot_direct) / res**2)
        err = err / (la.norm(pot_direct) / res**2)

        pconv_verifier_p2m2p.add_data_point(order, err)

        # {{{ apply M2M

        m2m_target_boxes = np.array([1], dtype=np.int32)
        m2m_src_box_starts = np.array([0, 1], dtype=np.int32)
        m2m_src_box_lists = np.array([0], dtype=np.int32)

        evt, (mpoles, ) = m2m(
            queue,
            src_expansions=mpoles,
            src_base_ibox=0,
            tgt_base_ibox=0,
            ntgt_level_boxes=mpoles.shape[0],
            target_boxes=m2m_target_boxes,
            src_box_starts=m2m_src_box_starts,
            src_box_lists=m2m_src_box_lists,
            centers=centers,
            src_rscale=m1_rscale,
            tgt_rscale=m2_rscale,

            #flags="print_hl_cl",
            out_host=True,
            **extra_kwargs)

        # }}}

        pot = eval_at(m2p, 1, m2_rscale)

        err = la.norm((pot - pot_direct) / res**2)
        err = err / (la.norm(pot_direct) / res**2)

        pconv_verifier_p2m2m2p.add_data_point(order, err)

        # {{{ apply M2L

        m2l_target_boxes = np.array([2], dtype=np.int32)
        m2l_src_box_starts = np.array([0, 1], dtype=np.int32)
        m2l_src_box_lists = np.array([1], dtype=np.int32)

        evt, (mpoles, ) = m2l(
            queue,
            src_expansions=mpoles,
            src_base_ibox=0,
            tgt_base_ibox=0,
            ntgt_level_boxes=mpoles.shape[0],
            target_boxes=m2l_target_boxes,
            src_box_starts=m2l_src_box_starts,
            src_box_lists=m2l_src_box_lists,
            centers=centers,
            src_rscale=m2_rscale,
            tgt_rscale=l1_rscale,

            #flags="print_hl_cl",
            out_host=True,
            **extra_kwargs)

        # }}}

        pot = eval_at(l2p, 2, l1_rscale)

        err = la.norm((pot - pot_direct) / res**2)
        err = err / (la.norm(pot_direct) / res**2)

        pconv_verifier_p2m2m2l2p.add_data_point(order, err)

        # {{{ apply L2L

        l2l_target_boxes = np.array([3], dtype=np.int32)
        l2l_src_box_starts = np.array([0, 1], dtype=np.int32)
        l2l_src_box_lists = np.array([2], dtype=np.int32)

        evt, (mpoles, ) = l2l(
            queue,
            src_expansions=mpoles,
            src_base_ibox=0,
            tgt_base_ibox=0,
            ntgt_level_boxes=mpoles.shape[0],
            target_boxes=l2l_target_boxes,
            src_box_starts=l2l_src_box_starts,
            src_box_lists=l2l_src_box_lists,
            centers=centers,
            src_rscale=l1_rscale,
            tgt_rscale=l2_rscale,

            #flags="print_hl_wrapper",
            out_host=True,
            **extra_kwargs)

        # }}}

        pot = eval_at(l2p, 3, l2_rscale)

        err = la.norm((pot - pot_direct) / res**2)
        err = err / (la.norm(pot_direct) / res**2)

        pconv_verifier_full.add_data_point(order, err)

    for name, verifier in [
        ("p2m2p", pconv_verifier_p2m2p),
        ("p2m2m2p", pconv_verifier_p2m2m2p),
        ("p2m2m2l2p", pconv_verifier_p2m2m2l2p),
        ("full", pconv_verifier_full),
    ]:
        print(30 * "-")
        print(name)
        print(30 * "-")
        print(verifier)
        print(30 * "-")
        verifier()
Beispiel #44
0
def run_dielectric_test(cl_ctx,
                        queue,
                        nelements,
                        qbx_order,
                        op_class,
                        mode,
                        k0=3,
                        k1=2.9,
                        mesh_order=10,
                        bdry_quad_order=None,
                        bdry_ovsmp_quad_order=None,
                        use_l2_weighting=False,
                        fmm_order=None,
                        visualize=False):

    if fmm_order is None:
        fmm_order = qbx_order * 2
    if bdry_quad_order is None:
        bdry_quad_order = mesh_order
    if bdry_ovsmp_quad_order is None:
        bdry_ovsmp_quad_order = 4 * bdry_quad_order

    from meshmode.mesh.generation import ellipse, make_curve_mesh
    from functools import partial
    mesh = make_curve_mesh(partial(ellipse, 3),
                           np.linspace(0, 1, nelements + 1), mesh_order)

    density_discr = Discretization(
        cl_ctx, mesh,
        InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order))

    logger.info("%d elements" % mesh.nelements)

    # from meshmode.discretization.visualization import make_visualizer
    # bdry_vis = make_visualizer(queue, density_discr, 20)

    # {{{ solve bvp

    from sumpy.kernel import HelmholtzKernel, AxisTargetDerivative
    kernel = HelmholtzKernel(2)

    beta = 2.5
    K0 = np.sqrt(k0**2 - beta**2)  # noqa
    K1 = np.sqrt(k1**2 - beta**2)  # noqa

    pde_op = op_class(mode,
                      k_vacuum=1,
                      interfaces=((0, 1, sym.DEFAULT_SOURCE), ),
                      domain_k_exprs=(k0, k1),
                      beta=beta,
                      use_l2_weighting=use_l2_weighting)

    op_unknown_sym = pde_op.make_unknown("unknown")

    representation0_sym = pde_op.representation(op_unknown_sym, 0)
    representation1_sym = pde_op.representation(op_unknown_sym, 1)

    from pytential.qbx import QBXLayerPotentialSource
    qbx = QBXLayerPotentialSource(density_discr,
                                  fine_order=bdry_ovsmp_quad_order,
                                  qbx_order=qbx_order,
                                  fmm_order=fmm_order).with_refinement()

    #print(sym.pretty(pde_op.operator(op_unknown_sym)))
    #1/0
    bound_pde_op = bind(qbx, pde_op.operator(op_unknown_sym))

    e_factor = float(pde_op.ez_enabled)
    h_factor = float(pde_op.hz_enabled)

    e_sources_0 = make_obj_array(list(np.array([[0.1, 0.2]]).T.copy()))
    e_strengths_0 = np.array([1 * e_factor])
    e_sources_1 = make_obj_array(list(np.array([[4, 4]]).T.copy()))
    e_strengths_1 = np.array([1 * e_factor])

    h_sources_0 = make_obj_array(list(np.array([[0.2, 0.1]]).T.copy()))
    h_strengths_0 = np.array([1 * h_factor])
    h_sources_1 = make_obj_array(list(np.array([[4, 5]]).T.copy()))
    h_strengths_1 = np.array([1 * h_factor])

    kernel_grad = [
        AxisTargetDerivative(i, kernel)
        for i in range(density_discr.ambient_dim)
    ]

    from sumpy.p2p import P2P
    pot_p2p = P2P(cl_ctx, [kernel], exclude_self=False)
    pot_p2p_grad = P2P(cl_ctx, kernel_grad, exclude_self=False)

    normal = bind(density_discr, sym.normal())(queue).as_vector(np.object)
    tangent = bind(density_discr,
                   sym.pseudoscalar() / sym.area_element())(queue).as_vector(
                       np.object)

    _, (E0, ) = pot_p2p(queue,
                        density_discr.nodes(),
                        e_sources_0, [e_strengths_0],
                        out_host=False,
                        k=K0)
    _, (E1, ) = pot_p2p(queue,
                        density_discr.nodes(),
                        e_sources_1, [e_strengths_1],
                        out_host=False,
                        k=K1)
    _, (grad0_E0, grad1_E0) = pot_p2p_grad(queue,
                                           density_discr.nodes(),
                                           e_sources_0, [e_strengths_0],
                                           out_host=False,
                                           k=K0)
    _, (grad0_E1, grad1_E1) = pot_p2p_grad(queue,
                                           density_discr.nodes(),
                                           e_sources_1, [e_strengths_1],
                                           out_host=False,
                                           k=K1)

    _, (H0, ) = pot_p2p(queue,
                        density_discr.nodes(),
                        h_sources_0, [h_strengths_0],
                        out_host=False,
                        k=K0)
    _, (H1, ) = pot_p2p(queue,
                        density_discr.nodes(),
                        h_sources_1, [h_strengths_1],
                        out_host=False,
                        k=K1)
    _, (grad0_H0, grad1_H0) = pot_p2p_grad(queue,
                                           density_discr.nodes(),
                                           h_sources_0, [h_strengths_0],
                                           out_host=False,
                                           k=K0)
    _, (grad0_H1, grad1_H1) = pot_p2p_grad(queue,
                                           density_discr.nodes(),
                                           h_sources_1, [h_strengths_1],
                                           out_host=False,
                                           k=K1)

    E0_dntarget = (grad0_E0 * normal[0] + grad1_E0 * normal[1])  # noqa
    E1_dntarget = (grad0_E1 * normal[0] + grad1_E1 * normal[1])  # noqa

    H0_dntarget = (grad0_H0 * normal[0] + grad1_H0 * normal[1])  # noqa
    H1_dntarget = (grad0_H1 * normal[0] + grad1_H1 * normal[1])  # noqa

    E0_dttarget = (grad0_E0 * tangent[0] + grad1_E0 * tangent[1])  # noqa
    E1_dttarget = (grad0_E1 * tangent[0] + grad1_E1 * tangent[1])  # noqa

    H0_dttarget = (grad0_H0 * tangent[0] + grad1_H0 * tangent[1])  # noqa
    H1_dttarget = (grad0_H1 * tangent[0] + grad1_H1 * tangent[1])  # noqa

    sqrt_w = bind(density_discr, sym.sqrt_jac_q_weight())(queue)

    bvp_rhs = np.zeros(len(pde_op.bcs), dtype=np.object)
    for i_bc, terms in enumerate(pde_op.bcs):
        for term in terms:
            assert term.i_interface == 0
            if term.field_kind == pde_op.field_kind_e:

                if term.direction == pde_op.dir_none:
                    bvp_rhs[i_bc] += (term.coeff_outer * E0 +
                                      term.coeff_inner * E1)
                elif term.direction == pde_op.dir_normal:
                    bvp_rhs[i_bc] += (term.coeff_outer * E0_dntarget +
                                      term.coeff_inner * E1_dntarget)
                elif term.direction == pde_op.dir_tangential:
                    bvp_rhs[i_bc] += (term.coeff_outer * E0_dttarget +
                                      term.coeff_inner * E1_dttarget)
                else:
                    raise NotImplementedError("direction spec in RHS")

            elif term.field_kind == pde_op.field_kind_h:
                if term.direction == pde_op.dir_none:
                    bvp_rhs[i_bc] += (term.coeff_outer * H0 +
                                      term.coeff_inner * H1)
                elif term.direction == pde_op.dir_normal:
                    bvp_rhs[i_bc] += (term.coeff_outer * H0_dntarget +
                                      term.coeff_inner * H1_dntarget)
                elif term.direction == pde_op.dir_tangential:
                    bvp_rhs[i_bc] += (term.coeff_outer * H0_dttarget +
                                      term.coeff_inner * H1_dttarget)
                else:
                    raise NotImplementedError("direction spec in RHS")

            if use_l2_weighting:
                bvp_rhs[i_bc] *= sqrt_w

    scipy_op = bound_pde_op.scipy_op(queue,
                                     "unknown",
                                     domains=[sym.DEFAULT_TARGET] *
                                     len(pde_op.bcs),
                                     K0=K0,
                                     K1=K1,
                                     dtype=np.complex128)

    if mode == "tem" or op_class is SRep:
        from sumpy.tools import vector_from_device, vector_to_device
        from pytential.solve import lu
        unknown = lu(scipy_op, vector_from_device(queue, bvp_rhs))
        unknown = vector_to_device(queue, unknown)

    else:
        from pytential.solve import gmres
        gmres_result = gmres(scipy_op,
                             bvp_rhs,
                             tol=1e-14,
                             progress=True,
                             hard_failure=True,
                             stall_iterations=0)

        unknown = gmres_result.solution

    # }}}

    targets_0 = make_obj_array(
        list(np.array([[3.2 + t, -4] for t in [0, 0.5, 1]]).T.copy()))
    targets_1 = make_obj_array(
        list(np.array([[t * -0.3, t * -0.2] for t in [0, 0.5, 1]]).T.copy()))

    from pytential.target import PointsTarget
    from sumpy.tools import vector_from_device
    F0_tgt = vector_from_device(
        queue,
        bind(  # noqa
            (qbx, PointsTarget(targets_0)),
            representation0_sym)(queue, unknown=unknown, K0=K0, K1=K1))
    F1_tgt = vector_from_device(
        queue,
        bind(  # noqa
            (qbx, PointsTarget(targets_1)),
            representation1_sym)(queue, unknown=unknown, K0=K0, K1=K1))

    _, (E0_tgt_true, ) = pot_p2p(queue,
                                 targets_0,
                                 e_sources_0, [e_strengths_0],
                                 out_host=True,
                                 k=K0)
    _, (E1_tgt_true, ) = pot_p2p(queue,
                                 targets_1,
                                 e_sources_1, [e_strengths_1],
                                 out_host=True,
                                 k=K1)

    _, (H0_tgt_true, ) = pot_p2p(queue,
                                 targets_0,
                                 h_sources_0, [h_strengths_0],
                                 out_host=True,
                                 k=K0)
    _, (H1_tgt_true, ) = pot_p2p(queue,
                                 targets_1,
                                 h_sources_1, [h_strengths_1],
                                 out_host=True,
                                 k=K1)

    err_F0_total = 0  # noqa
    err_F1_total = 0  # noqa

    i_field = 0

    def vec_norm(ary):
        return la.norm(ary.reshape(-1))

    def field_kind_to_string(field_kind):
        return {pde_op.field_kind_e: "E", pde_op.field_kind_h: "H"}[field_kind]

    for field_kind in pde_op.field_kinds:
        if not pde_op.is_field_present(field_kind):
            continue

        if field_kind == pde_op.field_kind_e:
            F0_tgt_true = E0_tgt_true  # noqa
            F1_tgt_true = E1_tgt_true  # noqa
        elif field_kind == pde_op.field_kind_h:
            F0_tgt_true = H0_tgt_true  # noqa
            F1_tgt_true = H1_tgt_true  # noqa
        else:
            assert False

        abs_err_F0 = vec_norm(F0_tgt[i_field] - F0_tgt_true)  # noqa
        abs_err_F1 = vec_norm(F1_tgt[i_field] - F1_tgt_true)  # noqa

        rel_err_F0 = abs_err_F0 / vec_norm(F0_tgt_true)  # noqa
        rel_err_F1 = abs_err_F1 / vec_norm(F1_tgt_true)  # noqa

        err_F0_total = max(rel_err_F0, err_F0_total)  # noqa
        err_F1_total = max(rel_err_F1, err_F1_total)  # noqa

        print("Abs Err %s0" % field_kind_to_string(field_kind), abs_err_F0)
        print("Abs Err %s1" % field_kind_to_string(field_kind), abs_err_F1)

        print("Rel Err %s0" % field_kind_to_string(field_kind), rel_err_F0)
        print("Rel Err %s1" % field_kind_to_string(field_kind), rel_err_F1)

        i_field += 1

    if visualize:
        from sumpy.visualization import FieldPlotter
        fplot = FieldPlotter(np.zeros(2), extent=5, npoints=300)
        from pytential.target import PointsTarget
        fld0 = bind((qbx, PointsTarget(fplot.points)),
                    representation0_sym)(queue, unknown=unknown, K0=K0)
        fld1 = bind((qbx, PointsTarget(fplot.points)),
                    representation1_sym)(queue, unknown=unknown, K1=K1)

        comp_fields = []
        i_field = 0
        for field_kind in pde_op.field_kinds:
            if not pde_op.is_field_present(field_kind):
                continue

            fld_str = field_kind_to_string(field_kind)
            comp_fields.extend([
                ("%s_fld0" % fld_str, fld0[i_field].get()),
                ("%s_fld1" % fld_str, fld1[i_field].get()),
            ])

            i_field += 0

        low_order_qbx = QBXLayerPotentialSource(
            density_discr,
            fine_order=bdry_ovsmp_quad_order,
            qbx_order=2,
            fmm_order=3).with_refinement()
        from sumpy.kernel import LaplaceKernel
        from pytential.target import PointsTarget
        ones = (cl.array.empty(queue, (density_discr.nnodes, ),
                               dtype=np.float64).fill(1))
        ind_func = -bind(
            (low_order_qbx, PointsTarget(fplot.points)),
            sym.D(LaplaceKernel(2), sym.var("u")))(queue, u=ones).get()

        _, (e_fld0_true, ) = pot_p2p(queue,
                                     fplot.points,
                                     e_sources_0, [e_strengths_0],
                                     out_host=True,
                                     k=K0)
        _, (e_fld1_true, ) = pot_p2p(queue,
                                     fplot.points,
                                     e_sources_1, [e_strengths_1],
                                     out_host=True,
                                     k=K1)
        _, (h_fld0_true, ) = pot_p2p(queue,
                                     fplot.points,
                                     h_sources_0, [h_strengths_0],
                                     out_host=True,
                                     k=K0)
        _, (h_fld1_true, ) = pot_p2p(queue,
                                     fplot.points,
                                     h_sources_1, [h_strengths_1],
                                     out_host=True,
                                     k=K1)

        #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
        fplot.write_vtk_file("potential-n%d.vts" % nelements, [
            ("e_fld0_true", e_fld0_true),
            ("e_fld1_true", e_fld1_true),
            ("h_fld0_true", h_fld0_true),
            ("h_fld1_true", h_fld1_true),
            ("ind", ind_func),
        ] + comp_fields)

    return err_F0_total, err_F1_total
Beispiel #45
0
def main(mesh_name="ellipse", visualize=False):
    import logging
    logging.basicConfig(level=logging.INFO)  # INFO for more progress info

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    from meshmode.mesh.generation import ellipse, make_curve_mesh
    from functools import partial

    if mesh_name == "ellipse":
        mesh = make_curve_mesh(partial(ellipse, 1),
                               np.linspace(0, 1, nelements + 1), mesh_order)
    elif mesh_name == "ellipse_array":
        base_mesh = make_curve_mesh(partial(ellipse, 1),
                                    np.linspace(0, 1, nelements + 1),
                                    mesh_order)

        from meshmode.mesh.processing import affine_map, merge_disjoint_meshes
        nx = 2
        ny = 2
        dx = 2 / nx
        meshes = [
            affine_map(base_mesh,
                       A=np.diag([dx * 0.25, dx * 0.25]),
                       b=np.array([dx * (ix - nx / 2), dx * (iy - ny / 2)]))
            for ix in range(nx) for iy in range(ny)
        ]

        mesh = merge_disjoint_meshes(meshes, single_group=True)

        if visualize:
            from meshmode.mesh.visualization import draw_curve
            draw_curve(mesh)
            import matplotlib.pyplot as plt
            plt.show()
    else:
        raise ValueError(f"unknown mesh name: {mesh_name}")

    pre_density_discr = Discretization(
        actx, mesh,
        InterpolatoryQuadratureSimplexGroupFactory(bdry_quad_order))

    from pytential.qbx import (QBXLayerPotentialSource,
                               QBXTargetAssociationFailedException)
    qbx = QBXLayerPotentialSource(pre_density_discr,
                                  fine_order=bdry_ovsmp_quad_order,
                                  qbx_order=qbx_order,
                                  fmm_order=fmm_order)

    from sumpy.visualization import FieldPlotter
    fplot = FieldPlotter(np.zeros(2), extent=5, npoints=500)
    targets = actx.from_numpy(fplot.points)

    from pytential import GeometryCollection
    places = GeometryCollection(
        {
            "qbx":
            qbx,
            "qbx_high_target_assoc_tol":
            qbx.copy(target_association_tolerance=0.05),
            "targets":
            PointsTarget(targets)
        },
        auto_where="qbx")
    density_discr = places.get_discretization("qbx")

    # {{{ describe bvp

    from sumpy.kernel import LaplaceKernel, HelmholtzKernel
    kernel = HelmholtzKernel(2)

    sigma_sym = sym.var("sigma")
    sqrt_w = sym.sqrt_jac_q_weight(2)
    inv_sqrt_w_sigma = sym.cse(sigma_sym / sqrt_w)

    # Brakhage-Werner parameter
    alpha = 1j

    # -1 for interior Dirichlet
    # +1 for exterior Dirichlet
    loc_sign = +1

    k_sym = sym.var("k")
    bdry_op_sym = (
        -loc_sign * 0.5 * sigma_sym + sqrt_w *
        (alpha * sym.S(kernel, inv_sqrt_w_sigma, k=k_sym, qbx_forced_limit=+1)
         - sym.D(kernel, inv_sqrt_w_sigma, k=k_sym, qbx_forced_limit="avg")))

    # }}}

    bound_op = bind(places, bdry_op_sym)

    # {{{ fix rhs and solve

    from meshmode.dof_array import thaw
    nodes = thaw(actx, density_discr.nodes())
    k_vec = np.array([2, 1])
    k_vec = k * k_vec / la.norm(k_vec, 2)

    def u_incoming_func(x):
        return actx.np.exp(1j * (x[0] * k_vec[0] + x[1] * k_vec[1]))

    bc = -u_incoming_func(nodes)

    bvp_rhs = bind(places, sqrt_w * sym.var("bc"))(actx, bc=bc)

    from pytential.solve import gmres
    gmres_result = gmres(bound_op.scipy_op(actx,
                                           sigma_sym.name,
                                           dtype=np.complex128,
                                           k=k),
                         bvp_rhs,
                         tol=1e-8,
                         progress=True,
                         stall_iterations=0,
                         hard_failure=True)

    # }}}

    # {{{ postprocess/visualize

    repr_kwargs = dict(source="qbx_high_target_assoc_tol",
                       target="targets",
                       qbx_forced_limit=None)
    representation_sym = (
        alpha * sym.S(kernel, inv_sqrt_w_sigma, k=k_sym, **repr_kwargs) -
        sym.D(kernel, inv_sqrt_w_sigma, k=k_sym, **repr_kwargs))

    u_incoming = u_incoming_func(targets)
    ones_density = density_discr.zeros(actx)
    for elem in ones_density:
        elem.fill(1)

    indicator = actx.to_numpy(
        bind(places, sym.D(LaplaceKernel(2), sigma_sym,
                           **repr_kwargs))(actx, sigma=ones_density))

    try:
        fld_in_vol = actx.to_numpy(
            bind(places, representation_sym)(actx,
                                             sigma=gmres_result.solution,
                                             k=k))
    except QBXTargetAssociationFailedException as e:
        fplot.write_vtk_file("helmholtz-dirichlet-failed-targets.vts",
                             [("failed", e.failed_target_flags.get(queue))])
        raise

    #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
    fplot.write_vtk_file("helmholtz-dirichlet-potential.vts", [
        ("potential", fld_in_vol),
        ("indicator", indicator),
        ("u_incoming", actx.to_numpy(u_incoming)),
    ])
Beispiel #46
0
def draw_pot_figure(aspect_ratio,
                    nsrc=100,
                    novsmp=None,
                    helmholtz_k=0,
                    what_operator="S",
                    what_operator_lpot=None,
                    order=4,
                    ovsmp_center_exp=0.66,
                    force_center_side=None):

    import logging
    logging.basicConfig(level=logging.INFO)

    if novsmp is None:
        novsmp = 4 * nsrc

    if what_operator_lpot is None:
        what_operator_lpot = what_operator

    ctx = cl.create_some_context()
    queue = cl.CommandQueue(ctx)

    # {{{ make plot targets

    center = np.asarray([0, 0], dtype=np.float64)
    from sumpy.visualization import FieldPlotter
    fp = FieldPlotter(center, npoints=1000, extent=6)

    # }}}

    # {{{ make p2p kernel calculator

    from sumpy.p2p import P2P
    from sumpy.kernel import LaplaceKernel, HelmholtzKernel
    from sumpy.expansion.local import H2DLocalExpansion, LineTaylorLocalExpansion
    if helmholtz_k:
        if isinstance(helmholtz_k, complex):
            knl = HelmholtzKernel(2, allow_evanescent=True)
            expn_class = H2DLocalExpansion
            knl_kwargs = {"k": helmholtz_k}
        else:
            knl = HelmholtzKernel(2)
            expn_class = H2DLocalExpansion
            knl_kwargs = {"k": helmholtz_k}

    else:
        knl = LaplaceKernel(2)
        expn_class = LineTaylorLocalExpansion
        knl_kwargs = {}

    vol_knl = process_kernel(knl, what_operator)
    p2p = P2P(ctx, [vol_knl], exclude_self=False, value_dtypes=np.complex128)

    lpot_knl = process_kernel(knl, what_operator_lpot)

    from sumpy.qbx import LayerPotential
    lpot = LayerPotential(ctx, [expn_class(lpot_knl, order=order)],
                          value_dtypes=np.complex128)

    # }}}

    # {{{ set up geometry

    # r,a,b match the corresponding letters from G. J. Rodin and O. Steinbach,
    # Boundary Element Preconditioners for problems defined on slender domains.
    # http://dx.doi.org/10.1137/S1064827500372067

    a = 1
    b = 1 / aspect_ratio

    def map_to_curve(t):
        t = t * (2 * np.pi)

        x = a * np.cos(t)
        y = b * np.sin(t)

        w = (np.zeros_like(t) + 1) / len(t)

        return x, y, w

    from curve import CurveGrid

    native_t = np.linspace(0, 1, nsrc, endpoint=False)
    native_x, native_y, native_weights = map_to_curve(native_t)
    native_curve = CurveGrid(native_x, native_y)

    ovsmp_t = np.linspace(0, 1, novsmp, endpoint=False)
    ovsmp_x, ovsmp_y, ovsmp_weights = map_to_curve(ovsmp_t)
    ovsmp_curve = CurveGrid(ovsmp_x, ovsmp_y)

    curve_len = np.sum(ovsmp_weights * ovsmp_curve.speed)
    hovsmp = curve_len / novsmp
    center_dist = 5 * hovsmp

    if force_center_side is not None:
        center_side = force_center_side * np.ones(len(native_curve))
    else:
        center_side = -np.sign(native_curve.mean_curvature)

    centers = (native_curve.pos +
               center_side[:, np.newaxis] * center_dist * native_curve.normal)

    #native_curve.plot()
    #pt.show()

    volpot_kwargs = knl_kwargs.copy()
    lpot_kwargs = knl_kwargs.copy()

    if what_operator == "D":
        volpot_kwargs["src_derivative_dir"] = native_curve.normal

    if what_operator_lpot == "D":
        lpot_kwargs["src_derivative_dir"] = ovsmp_curve.normal

    if what_operator_lpot == "S'":
        lpot_kwargs["tgt_derivative_dir"] = native_curve.normal

    # }}}

    if 0:
        # {{{ build matrix

        from fourier import make_fourier_interp_matrix
        fim = make_fourier_interp_matrix(novsmp, nsrc)
        from sumpy.tools import build_matrix
        from scipy.sparse.linalg import LinearOperator

        def apply_lpot(x):
            xovsmp = np.dot(fim, x)
            evt, (y, ) = lpot(queue,
                              native_curve.pos,
                              ovsmp_curve.pos,
                              centers,
                              [xovsmp * ovsmp_curve.speed * ovsmp_weights],
                              expansion_radii=np.ones(centers.shape[1]),
                              **lpot_kwargs)

            return y

        op = LinearOperator((nsrc, nsrc), apply_lpot)
        mat = build_matrix(op, dtype=np.complex128)
        w, v = la.eig(mat)
        pt.plot(w.real, "o-")
        #import sys; sys.exit(0)
        return

        # }}}

    # {{{ compute potentials

    mode_nr = 0
    density = np.cos(mode_nr * 2 * np.pi * native_t).astype(np.complex128)
    ovsmp_density = np.cos(mode_nr * 2 * np.pi * ovsmp_t).astype(np.complex128)
    evt, (vol_pot, ) = p2p(queue, fp.points, native_curve.pos,
                           [native_curve.speed * native_weights * density],
                           **volpot_kwargs)

    evt, (curve_pot, ) = lpot(
        queue,
        native_curve.pos,
        ovsmp_curve.pos,
        centers, [ovsmp_density * ovsmp_curve.speed * ovsmp_weights],
        expansion_radii=np.ones(centers.shape[1]),
        **lpot_kwargs)

    # }}}

    if 0:
        # {{{ plot on-surface potential in 2D

        pt.plot(curve_pot, label="pot")
        pt.plot(density, label="dens")
        pt.legend()
        pt.show()

        # }}}

    fp.write_vtk_file("potential.vts", [("potential", vol_pot.real)])

    if 0:
        # {{{ 2D false-color plot

        pt.clf()
        plotval = np.log10(1e-20 + np.abs(vol_pot))
        im = fp.show_scalar_in_matplotlib(plotval.real)
        from matplotlib.colors import Normalize
        im.set_norm(Normalize(vmin=-2, vmax=1))

        src = native_curve.pos
        pt.plot(src[:, 0], src[:, 1], "o-k")
        # close the curve
        pt.plot(src[-1::-len(src) + 1, 0], src[-1::-len(src) + 1, 1], "o-k")

        #pt.gca().set_aspect("equal", "datalim")
        cb = pt.colorbar(shrink=0.9)
        cb.set_label(r"$\log_{10}(\mathdefault{Error})$")
        #from matplotlib.ticker import NullFormatter
        #pt.gca().xaxis.set_major_formatter(NullFormatter())
        #pt.gca().yaxis.set_major_formatter(NullFormatter())
        fp.set_matplotlib_limits()

        # }}}
    else:
        # {{{ 3D plots

        plotval_vol = vol_pot.real
        plotval_c = curve_pot.real

        scale = 1

        if 0:
            # crop singularities--doesn't work very well
            neighbors = [
                np.roll(plotval_vol, 3, 0),
                np.roll(plotval_vol, -3, 0),
                np.roll(plotval_vol, 6, 0),
                np.roll(plotval_vol, -6, 0),
            ]
            avg = np.average(np.abs(plotval_vol))
            outlier_flag = sum(np.abs(plotval_vol - nb)
                               for nb in neighbors) > avg
            plotval_vol[outlier_flag] = sum(
                nb[outlier_flag] for nb in neighbors) / len(neighbors)

        fp.show_scalar_in_mayavi(scale * plotval_vol, max_val=1)
        from mayavi import mlab
        mlab.colorbar()
        if 1:
            mlab.points3d(native_curve.pos[0],
                          native_curve.pos[1],
                          scale * plotval_c,
                          scale_factor=0.02)
        mlab.show()
Beispiel #47
0
def main():
    import logging
    logger = logging.getLogger(__name__)
    logging.basicConfig(level=logging.WARNING)  # INFO for more progress info

    from meshmode.mesh.io import generate_gmsh, FileSource
    mesh = generate_gmsh(
            FileSource(cad_file_name), 2, order=2,
            other_options=["-string", "Mesh.CharacteristicLengthMax = %g;" % h])

    from meshmode.mesh.processing import perform_flips
    # Flip elements--gmsh generates inside-out geometry.
    mesh = perform_flips(mesh, np.ones(mesh.nelements))

    from meshmode.mesh.processing import find_bounding_box
    bbox_min, bbox_max = find_bounding_box(mesh)
    bbox_center = 0.5*(bbox_min+bbox_max)
    bbox_size = max(bbox_max-bbox_min) / 2

    logger.info("%d elements" % mesh.nelements)

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory

    density_discr = Discretization(
            cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))

    qbx, _ = QBXLayerPotentialSource(density_discr, 4*target_order, qbx_order,
            fmm_order=qbx_order + 3,
            target_association_tolerance=0.15).with_refinement()

    nodes = density_discr.nodes().with_queue(queue)

    angle = cl.clmath.atan2(nodes[1], nodes[0])

    from pytential import bind, sym
    #op = sym.d_dx(sym.S(kernel, sym.var("sigma"), qbx_forced_limit=None))
    op = sym.D(kernel, sym.var("sigma"), qbx_forced_limit=None)
    #op = sym.S(kernel, sym.var("sigma"), qbx_forced_limit=None)

    sigma = cl.clmath.cos(mode_nr*angle)
    if 0:
        sigma = 0*angle
        from random import randrange
        for i in range(5):
            sigma[randrange(len(sigma))] = 1

    if isinstance(kernel, HelmholtzKernel):
        sigma = sigma.astype(np.complex128)

    fplot = FieldPlotter(bbox_center, extent=3.5*bbox_size, npoints=150)

    from pytential.target import PointsTarget
    fld_in_vol = bind(
            (qbx, PointsTarget(fplot.points)),
            op)(queue, sigma=sigma, k=k).get()

    #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
    fplot.write_vtk_file(
            "potential-3d.vts",
            [
                ("potential", fld_in_vol)
                ]
            )

    bdry_normals = bind(
            density_discr,
            sym.normal(density_discr.ambient_dim))(queue).as_vector(dtype=object)

    from meshmode.discretization.visualization import make_visualizer
    bdry_vis = make_visualizer(queue, density_discr, target_order)

    bdry_vis.write_vtk_file("source-3d.vtu", [
        ("sigma", sigma),
        ("bdry_normals", bdry_normals),
        ])
Beispiel #48
0
def test_single_plus_double_with_single_fmm(actx_factory, do_plot=False):
    logging.basicConfig(level=logging.INFO)

    actx = actx_factory()

    # prevent cache 'splosion
    from sympy.core.cache import clear_cache
    clear_cache()

    nelements = 300
    target_order = 8
    qbx_order = 3

    mesh = mgen.make_curve_mesh(mgen.WobblyCircle.random(8, seed=30),
                                np.linspace(0, 1, nelements + 1), target_order)

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory

    pre_density_discr = Discretization(
        actx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))
    direct_qbx = QBXLayerPotentialSource(
        pre_density_discr,
        4 * target_order,
        qbx_order,
        fmm_order=False,
        target_association_tolerance=0.05,
    )
    fmm_qbx = QBXLayerPotentialSource(
        pre_density_discr,
        4 * target_order,
        qbx_order,
        fmm_order=qbx_order + 3,
        _expansions_in_tree_have_extent=True,
        target_association_tolerance=0.05,
    )

    fplot = FieldPlotter(np.zeros(2), extent=5, npoints=500)
    from pytential.target import PointsTarget
    ptarget = PointsTarget(actx.freeze(actx.from_numpy(fplot.points)))
    from sumpy.kernel import LaplaceKernel

    places = GeometryCollection(
        {
            "direct_qbx": direct_qbx,
            "fmm_qbx": fmm_qbx,
            "target": ptarget,
        },
        auto_where=("fmm_qbx", "target"))

    direct_density_discr = places.get_discretization("direct_qbx")
    fmm_density_discr = places.get_discretization("fmm_qbx")

    knl = LaplaceKernel(2)
    from pytential.qbx import QBXTargetAssociationFailedException
    op_d = sym.D(knl, sym.var("sigma"), qbx_forced_limit=None)
    op_s = sym.S(knl, sym.var("sigma"), qbx_forced_limit=None)
    op = op_d + op_s * 0.5
    try:
        direct_sigma = direct_density_discr.zeros(actx) + 1
        direct_fld_in_vol = bind(places,
                                 op,
                                 auto_where=("direct_qbx",
                                             "target"))(actx,
                                                        sigma=direct_sigma)
    except QBXTargetAssociationFailedException as e:
        fplot.show_scalar_in_matplotlib(
            actx.to_numpy(actx.thaw(e.failed_target_flags)))
        import matplotlib.pyplot as pt
        pt.show()
        raise

    fmm_sigma = fmm_density_discr.zeros(actx) + 1
    fmm_bound_op = bind(places, op, auto_where=("fmm_qbx", "target"))
    print(fmm_bound_op.code)
    fmm_fld_in_vol = fmm_bound_op(actx, sigma=fmm_sigma)

    err = actx.np.fabs(fmm_fld_in_vol - direct_fld_in_vol)
    linf_err = actx.to_numpy(err).max()
    print("l_inf error:", linf_err)

    if do_plot:
        fplot.write_vtk_file(
            "potential.vts",
            [("fmm_fld_in_vol", actx.to_numpy(fmm_fld_in_vol)),
             ("direct_fld_in_vol", actx.to_numpy(direct_fld_in_vol))])

    assert linf_err < 1e-3

    # check that using one FMM works
    op = op_d.copy(source_kernels=op_d.source_kernels + (knl, ),
                   densities=op_d.densities + (sym.var("sigma") * 0.5, ))
    single_fmm_bound_op = bind(places, op, auto_where=("fmm_qbx", "target"))
    print(single_fmm_bound_op.code)
    single_fmm_fld_in_vol = fmm_bound_op(actx, sigma=fmm_sigma)

    err = actx.np.fabs(fmm_fld_in_vol - single_fmm_fld_in_vol)
    linf_err = actx.to_numpy(err).max()
    print("l_inf error:", linf_err)

    assert linf_err < 1e-15