Beispiel #1
0
    def __init__(self, pretrained_model, latent_size):
        self.flow_shape = pretrained_model.base_dist.shape
        self.latent_size = latent_size

        # initialize transforms with first scale of pretrained models
        transforms = pretrained_model.transforms[0:28]

        # Replace slice layer with a compression flow
        mencoder = ConditionalNormal(ConvEncoderNet(
            in_channels=48,
            out_channels=768,
            mid_channels=[64, 128, 256],
            max_pool=True,
            batch_norm=True),
                                     split_dim=1)
        mdecoder = ConditionalNormal(ConvDecoderNet(
            in_channels=768,
            out_shape=(48 * 2, 8, 8),
            mid_channels=[256, 128, 64],
            batch_norm=True,
            in_lambda=lambda x: x.view(x.shape[0], x.shape[1], 1, 1)),
                                     split_dim=1)

        mid_vae = VAE(encoder=mencoder, decoder=mdecoder)
        reshape = Reshape(input_shape=(768, ), output_shape=(12, 8, 8))
        transforms.extend([mid_vae, reshape])

        # Non-dimension preserving flows
        current_shape = pretrained_model.base_dist.shape
        flat_dim = current_shape[0] * current_shape[1] * current_shape[2]
        fencoder = ConditionalNormal(
            MLP(flat_dim,
                2 * latent_size,
                hidden_units=[512, 256],
                activation='relu',
                in_lambda=lambda x: x.view(x.shape[0], flat_dim)))
        fdecoder = ConditionalNormal(MLP(
            latent_size,
            2 * flat_dim,
            hidden_units=[256, 512],
            activation='relu',
            out_lambda=lambda x: x.view(x.shape[0], current_shape[0] * 2,
                                        current_shape[1], current_shape[2])),
                                     split_dim=1)

        # append last scale of pretrained model and extend with the compressive VAE
        transforms.extend(pretrained_model.transforms[29:])
        final_vae = VAE(encoder=fencoder, decoder=fdecoder)
        transforms.append(final_vae)

        # Base distribution for non-dimension preserving portion of flow
        base1 = StandardNormal((latent_size, ))

        super(CompressPretrained, self).__init__(base_dist=[None, base1],
                                                 transforms=transforms)
Beispiel #2
0
    def test_stochastic_transform_is_well_behaved(self):
        batch_size = 8
        data_size = 10
        latent_size = 2

        x = torch.randn(batch_size, data_size)

        encoder = ConditionalNormal(nn.Linear(data_size,2*latent_size))
        decoder = ConditionalNormal(nn.Linear(latent_size,2*data_size))

        transform = VAE(decoder=decoder, encoder=encoder)
        self.assert_stochastic_transform_is_well_behaved(transform, x, z_shape=(batch_size, latent_size), z_dtype=torch.float)
Beispiel #3
0

#model = NDPFlow(base_dist=[StandardNormal((16,7,7)), StandardNormal((latent_size,))],
model = NDPFlow(base_dist=[None, StandardNormal((latent_size,))],
                transforms=[
                    UniformDequantization(num_bits=8),
                    ActNormBijection2d(1),
                    ScalarAffineBijection(scale=2.0),
                    ScalarAffineBijection(shift=-0.5),
                    Squeeze2d(),
                    ActNormBijection2d(4), Conv1x1(4), AffineCouplingBijection(net(4)),
                    ActNormBijection2d(4), Conv1x1(4), AffineCouplingBijection(net(4)),
                    Squeeze2d(),
                    ActNormBijection2d(16), Conv1x1(16), AffineCouplingBijection(net(16)),
                    ActNormBijection2d(16), Conv1x1(16), AffineCouplingBijection(net(16)),
                    VAE(encoder=encoder, decoder=decoder)
                ]).to(device)

print(model)

###########
## Optim ##
###########

optimizer = Adam(model.parameters(), lr=1e-3)

###########
## Train ##
###########

print('Training...')
Beispiel #4
0
    def __init__(self, data_shape, num_bits,
                 base_distribution, num_scales, num_steps, actnorm, 
                 vae_hidden_units,
                 coupling_network,
                 dequant, dequant_steps, dequant_context,
                 coupling_blocks, coupling_channels, coupling_dropout,
                 coupling_gated_conv=None, coupling_depth=None, coupling_mixtures=None):

        assert len(base_distribution) == 1, "Only a single base distribution is supported"
        transforms = []
        current_shape = data_shape
        if num_steps == 0: num_scales = 0
        
        if dequant == 'uniform' or num_steps == 0 or num_scales == 0:
            # no bijective flows defaults to only using uniform dequantization
            transforms.append(UniformDequantization(num_bits=num_bits))
        elif dequant == 'flow':            
            dequantize_flow = DequantizationFlow(data_shape=data_shape,
                                                 num_bits=num_bits,
                                                 num_steps=dequant_steps,
                                                 coupling_network=coupling_network,
                                                 num_context=dequant_context,
                                                 num_blocks=coupling_blocks,
                                                 mid_channels=coupling_channels,
                                                 depth=coupling_depth,
                                                 dropout=coupling_dropout,
                                                 gated_conv=coupling_gated_conv,
                                                 num_mixtures=coupling_mixtures)
            transforms.append(VariationalDequantization(encoder=dequantize_flow, num_bits=num_bits))

        # Change range from [0,1]^D to [-0.5, 0.5]^D
        transforms.append(ScalarAffineBijection(shift=-0.5))

        for scale in range(num_scales):

            # squeeze to exchange height and width for more channels
            transforms.append(Squeeze2d())
            current_shape = (current_shape[0] * 4,
                             current_shape[1] // 2,
                             current_shape[2] // 2)

            # Dimension preserving components
            for step in range(num_steps):
                if actnorm: transforms.append(ActNormBijection2d(current_shape[0]))
                transforms.append(Conv1x1(current_shape[0]))
                if coupling_network == "conv":
                    transforms.append(
                        Coupling(in_channels=current_shape[0],
                                 num_blocks=coupling_blocks,
                                 mid_channels=coupling_channels,
                                 depth=coupling_depth,
                                 dropout=coupling_dropout,
                                 gated_conv=coupling_gated_conv,
                                 coupling_network=coupling_network))
                else:
                    transforms.append(
                        MixtureCoupling(in_channels=current_shape[0],
                                        mid_channels=coupling_channels,
                                        num_mixtures=coupling_mixtures,
                                        num_blocks=coupling_blocks,
                                        dropout=coupling_dropout))
 
            # Non-dimension preserving flows: reduce the dimensionality of data by 2 (channel-wise)
            if actnorm: transforms.append(ActNormBijection2d(current_shape[0]))
            assert current_shape[0] % 2 == 0, f"Current shape {current_shape[1]}x{current_shape[2]} must be divisible by two"
            latent_size = (current_shape[0] * current_shape[1] * current_shape[2]) // 2
            
            encoder = ConditionalNormal(
                ConvEncoderNet(in_channels=current_shape[0],
                               out_channels=latent_size,
                               mid_channels=vae_hidden_units,
                               max_pool=True, batch_norm=True),
                split_dim=1)
            decoder = ConditionalNormal(
                ConvDecoderNet(in_channels=latent_size,
                               out_shape=(current_shape[0] * 2, current_shape[1], current_shape[2]),
                               mid_channels=list(reversed(vae_hidden_units)),
                               batch_norm=True,
                               in_lambda=lambda x: x.view(x.shape[0], x.shape[1], 1, 1)),
                split_dim=1)
            
            transforms.append(VAE(encoder=encoder, decoder=decoder))
            current_shape = (current_shape[0] // 2,
                             current_shape[1],
                             current_shape[2])

            if scale < num_scales - 1:
                # reshape latent sample to have height and width
                transforms.append(Reshape(input_shape=(latent_size,), output_shape=current_shape))
            
        # Base distribution for dimension preserving portion of flow
        if base_distribution == "n":
            base_dist = StandardNormal((latent_size,))
        elif base_distribution == "c":
            base_dist = ConvNormal2d((latent_size,))
        elif base_distribution == "u":
            base_dist = StandardUniform((latent_size,))
        else:
            raise ValueError("Base distribution must be one of n=Normal, u=Uniform, or c=ConvNormal")

        # for reference save the shape output by the bijective flow
        self.latent_size = latent_size
        self.flow_shape = current_shape

        super(MultilevelCompressiveFlow, self).__init__(base_dist=[None, base_dist], transforms=transforms)
Beispiel #5
0
    def __init__(self,
                 data_shape,
                 cond_shape,
                 num_bits,
                 num_scales,
                 num_steps,
                 actnorm,
                 conditional_channels,
                 lowres_encoder_channels,
                 lowres_encoder_blocks,
                 lowres_encoder_depth,
                 lowres_upsampler_channels,
                 pooling,
                 compression_ratio,
                 coupling_network,
                 coupling_blocks,
                 coupling_channels,
                 coupling_dropout=0.0,
                 coupling_gated_conv=None,
                 coupling_depth=None,
                 coupling_mixtures=None,
                 dequant="flow",
                 dequant_steps=4,
                 dequant_context=32,
                 dequant_blocks=2,
                 augment_steps=4,
                 augment_context=32,
                 augment_blocks=2,
                 augment_size=None,
                 checkerboard_scales=[],
                 tuple_flip=True):

        if len(compression_ratio) == 1 and num_scales > 1:
            compression_ratio = [compression_ratio[0]] * (num_scales - 1)
        assert all([
            compression_ratio[s] >= 0.0 and compression_ratio[s] < 1.0
            for s in range(num_scales - 1)
        ])

        # initialize context. Only upsample context in ContextInit if latent shape doesn't change during the flow.
        context_init = ContextInit(num_bits=num_bits,
                                   in_channels=cond_shape[0],
                                   out_channels=lowres_encoder_channels,
                                   mid_channels=lowres_encoder_channels,
                                   num_blocks=lowres_encoder_blocks,
                                   depth=lowres_encoder_depth,
                                   dropout=coupling_dropout)

        transforms = []
        current_shape = data_shape
        if dequant == 'uniform':
            transforms.append(UniformDequantization(num_bits=num_bits))
        elif dequant == 'flow':
            dequantize_flow = DequantizationFlow(
                data_shape=data_shape,
                num_bits=num_bits,
                num_steps=dequant_steps,
                coupling_network=coupling_network,
                num_context=dequant_context,
                num_blocks=dequant_blocks,
                mid_channels=coupling_channels,
                depth=coupling_depth,
                dropout=0.0,
                gated_conv=False,
                num_mixtures=coupling_mixtures,
                checkerboard=True,
                tuple_flip=tuple_flip)
            transforms.append(
                VariationalDequantization(encoder=dequantize_flow,
                                          num_bits=num_bits))

        # Change range from [0,1]^D to [-0.5, 0.5]^D
        transforms.append(ScalarAffineBijection(shift=-0.5))

        # Initial squeezing
        if current_shape[1] >= 128 and current_shape[2] >= 128:
            # H x W -> 64 x 64
            transforms.append(Squeeze2d())
            current_shape = (current_shape[0] * 4, current_shape[1] // 2,
                             current_shape[2] // 2)

        if current_shape[1] >= 64 and current_shape[2] >= 64:
            # H x W -> 32 x 32
            transforms.append(Squeeze2d())
            current_shape = (current_shape[0] * 4, current_shape[1] // 2,
                             current_shape[2] // 2)

        if 0 not in checkerboard_scales or (current_shape[1] > 32
                                            and current_shape[2] > 32):
            # Only go to 16 x 16 if not doing checkerboard splits first
            transforms.append(Squeeze2d())
            current_shape = (current_shape[0] * 4, current_shape[1] // 2,
                             current_shape[2] // 2)

        # add in augmentation channels if desired
        if augment_size is not None and augment_size > 0:
            #transforms.append(Augment(StandardUniform((augment_size, current_shape[1], current_shape[2])), x_size=current_shape[0]))
            #transforms.append(Augment(StandardNormal((augment_size, current_shape[1], current_shape[2])), x_size=current_shape[0]))
            augment_flow = AugmentFlow(data_shape=current_shape,
                                       augment_size=augment_size,
                                       num_steps=augment_steps,
                                       coupling_network=coupling_network,
                                       mid_channels=coupling_channels,
                                       num_context=augment_context,
                                       num_mixtures=coupling_mixtures,
                                       num_blocks=augment_blocks,
                                       dropout=0.0,
                                       checkerboard=True,
                                       tuple_flip=tuple_flip)
            transforms.append(
                Augment(encoder=augment_flow, x_size=current_shape[0]))
            current_shape = (current_shape[0] + augment_size, current_shape[1],
                             current_shape[2])

        for scale in range(num_scales):

            # First and Third scales use checkerboard split pattern
            checkerboard = scale in checkerboard_scales
            context_out_channels = min(current_shape[0], coupling_channels)
            context_out_shape = (context_out_channels, current_shape[1],
                                 current_shape[2] //
                                 2) if checkerboard else (context_out_channels,
                                                          current_shape[1],
                                                          current_shape[2])

            # reshape the context to the current size for all flow steps at this scale
            context_upsampler_net = UpsamplerNet(
                in_channels=lowres_encoder_channels,
                out_shape=context_out_shape,
                mid_channels=lowres_upsampler_channels)
            transforms.append(
                ContextUpsampler(context_net=context_upsampler_net,
                                 direction='forward'))

            for step in range(num_steps):

                flip = (step % 2 == 0) if tuple_flip else False

                if len(conditional_channels) == 0:
                    if actnorm:
                        transforms.append(ActNormBijection2d(current_shape[0]))
                    transforms.append(Conv1x1(current_shape[0]))
                else:
                    if actnorm:
                        transforms.append(
                            ConditionalActNormBijection2d(
                                cond_shape=current_shape,
                                out_channels=current_shape[0],
                                mid_channels=conditional_channels))
                    transforms.append(
                        ConditionalConv1x1(cond_shape=current_shape,
                                           out_channels=current_shape[0],
                                           mid_channels=conditional_channels,
                                           slogdet_cpu=True))

                if coupling_network in ["conv", "densenet"]:
                    transforms.append(
                        SRCoupling(x_size=context_out_shape,
                                   y_size=current_shape,
                                   mid_channels=coupling_channels,
                                   depth=coupling_depth,
                                   num_blocks=coupling_blocks,
                                   dropout=coupling_dropout,
                                   gated_conv=coupling_gated_conv,
                                   coupling_network=coupling_network,
                                   checkerboard=checkerboard,
                                   flip=flip))

                elif coupling_network == "transformer":
                    transforms.append(
                        SRMixtureCoupling(x_size=context_out_shape,
                                          y_size=current_shape,
                                          mid_channels=coupling_channels,
                                          dropout=coupling_dropout,
                                          num_blocks=coupling_blocks,
                                          num_mixtures=coupling_mixtures,
                                          checkerboard=checkerboard,
                                          flip=flip))

            # Upsample context (for the previous flows, only if moving in the inverse direction)
            transforms.append(
                ContextUpsampler(context_net=context_upsampler_net,
                                 direction='inverse'))

            if scale < num_scales - 1:
                if pooling == 'none' or compression_ratio[scale] == 0.0:
                    # fully bijective flow with multi-scale architecture
                    transforms.append(Squeeze2d())
                    current_shape = (current_shape[0] * 4,
                                     current_shape[1] // 2,
                                     current_shape[2] // 2)
                elif pooling == 'slice':
                    # slice some of the dimensions (channel-wise) out from further flow steps
                    unsliced_channels = int(
                        max(
                            1, 4 * current_shape[0] *
                            (1.0 - compression_ratio[scale])))
                    sliced_channels = int(4 * current_shape[0] -
                                          unsliced_channels)
                    noise_shape = (sliced_channels, current_shape[1] // 2,
                                   current_shape[2] // 2)
                    transforms.append(Squeeze2d())
                    transforms.append(
                        Slice(StandardNormal(noise_shape),
                              num_keep=unsliced_channels,
                              dim=1))
                    current_shape = (unsliced_channels, current_shape[1] // 2,
                                     current_shape[2] // 2)
                elif pooling == 'max':
                    # max pooling to compress dimensions spatially, h//2 and w//2
                    noise_shape = (current_shape[0] * 3, current_shape[1] // 2,
                                   current_shape[2] // 2)
                    decoder = StandardHalfNormal(noise_shape)
                    transforms.append(
                        SimpleMaxPoolSurjection2d(decoder=decoder))
                    current_shape = (current_shape[0], current_shape[1] // 2,
                                     current_shape[2] // 2)
                elif pooling == "mvae":
                    # Compressive flow: reduce the dimensionality of data by 2 (channel-wise)
                    compressed_channels = max(
                        1,
                        int(current_shape[0] *
                            (1.0 - compression_ratio[scale])))
                    latent_size = compressed_channels * current_shape[
                        1] * current_shape[2]
                    vae_channels = [
                        current_shape[0] * 2, current_shape[0] * 4,
                        current_shape[0] * 8
                    ]
                    encoder = ConditionalNormal(ConvEncoderNet(
                        in_channels=current_shape[0],
                        out_channels=latent_size,
                        mid_channels=vae_channels,
                        max_pool=True,
                        batch_norm=True),
                                                split_dim=1)
                    decoder = ConditionalNormal(ConvDecoderNet(
                        in_channels=latent_size,
                        out_shape=(current_shape[0] * 2, current_shape[1],
                                   current_shape[2]),
                        mid_channels=list(reversed(vae_channels)),
                        batch_norm=True,
                        in_lambda=lambda x: x.view(x.shape[0], x.shape[1], 1, 1
                                                   )),
                                                split_dim=1)
                    transforms.append(VAE(encoder=encoder, decoder=decoder))
                    transforms.append(
                        Reshape(input_shape=(latent_size, ),
                                output_shape=(compressed_channels,
                                              current_shape[1],
                                              current_shape[2])))

                    # after reducing channels with mvae, squeeze to reshape latent space before another sequence of flows
                    transforms.append(Squeeze2d())
                    current_shape = (
                        compressed_channels * 4,  # current_shape[0] * 4
                        current_shape[1] // 2,
                        current_shape[2] // 2)

                else:
                    raise ValueError(
                        "pooling argument must be either mvae, slice, max, or none"
                    )

            else:
                if actnorm:
                    transforms.append(ActNormBijection2d(current_shape[0]))

        # for reference save the shape output by the bijective flow
        self.latent_size = current_shape[0] * current_shape[1] * current_shape[
            2]
        self.flow_shape = current_shape

        super(SRPoolFlow, self).__init__(base_dist=ConvNormal2d(current_shape),
                                         transforms=transforms,
                                         context_init=context_init)
Beispiel #6
0
    def __init__(self,
                 data_shape,
                 num_bits,
                 base_distributions,
                 num_scales,
                 num_steps,
                 actnorm,
                 vae_hidden_units,
                 latent_size,
                 vae_activation,
                 coupling_network,
                 dequant,
                 dequant_steps,
                 dequant_context,
                 coupling_blocks,
                 coupling_channels,
                 coupling_dropout,
                 coupling_growth=None,
                 coupling_gated_conv=None,
                 coupling_depth=None,
                 coupling_mixtures=None):

        transforms = []
        current_shape = data_shape
        if num_steps == 0: num_scales = 0

        if dequant == 'uniform' or num_steps == 0 or num_scales == 0:
            # no bijective flows defaults to only using uniform dequantization
            transforms.append(UniformDequantization(num_bits=num_bits))
        elif dequant == 'flow':
            dequantize_flow = DequantizationFlow(
                data_shape=data_shape,
                num_bits=num_bits,
                num_steps=dequant_steps,
                coupling_network=coupling_network,
                num_context=dequant_context,
                num_blocks=coupling_blocks,
                mid_channels=coupling_channels,
                depth=coupling_depth,
                growth=coupling_growth,
                dropout=coupling_dropout,
                gated_conv=coupling_gated_conv,
                num_mixtures=coupling_mixtures)
            transforms.append(
                VariationalDequantization(encoder=dequantize_flow,
                                          num_bits=num_bits))

        # Change range from [0,1]^D to [-0.5, 0.5]^D
        transforms.append(ScalarAffineBijection(shift=-0.5))

        # Initial squeeze
        transforms.append(Squeeze2d())
        current_shape = (current_shape[0] * 4, current_shape[1] // 2,
                         current_shape[2] // 2)

        # Dimension preserving flows
        for scale in range(num_scales):
            for step in range(num_steps):
                if actnorm:
                    transforms.append(ActNormBijection2d(current_shape[0]))
                transforms.append(Conv1x1(current_shape[0]))
                if coupling_network in ["conv", "densenet"]:
                    transforms.append(
                        Coupling(in_channels=current_shape[0],
                                 num_blocks=coupling_blocks,
                                 mid_channels=coupling_channels,
                                 depth=coupling_depth,
                                 growth=coupling_growth,
                                 dropout=coupling_dropout,
                                 gated_conv=coupling_gated_conv,
                                 coupling_network=coupling_network))
                else:
                    transforms.append(
                        MixtureCoupling(in_channels=current_shape[0],
                                        mid_channels=coupling_channels,
                                        num_mixtures=coupling_mixtures,
                                        num_blocks=coupling_blocks,
                                        dropout=coupling_dropout))

            if scale < num_scales - 1:
                transforms.append(Squeeze2d())
                current_shape = (current_shape[0] * 4, current_shape[1] // 2,
                                 current_shape[2] // 2)
            else:
                if actnorm:
                    transforms.append(ActNormBijection2d(current_shape[0]))

        # Base distribution for dimension preserving portion of flow
        if len(base_distributions) > 1:
            if base_distributions[0] == "n":
                base0 = StandardNormal(current_shape)
            elif base_distributions[0] == "c":
                base0 = ConvNormal2d(current_shape)
            elif base_distributions[0] == "u":
                base0 = StandardUniform(current_shape)
            else:
                raise ValueError(
                    "Base distribution must be one of n=Noraml, u=Uniform, or c=ConvNormal"
                )
        else:
            base0 = None

        # for reference save the shape output by the bijective flow
        self.flow_shape = current_shape

        # Non-dimension preserving flows
        flat_dim = current_shape[0] * current_shape[1] * current_shape[2]
        encoder = ConditionalNormal(
            MLP(flat_dim,
                2 * latent_size,
                hidden_units=vae_hidden_units,
                activation=vae_activation,
                in_lambda=lambda x: x.view(x.shape[0], flat_dim)))
        decoder = ConditionalNormal(MLP(
            latent_size,
            2 * flat_dim,
            hidden_units=list(reversed(vae_hidden_units)),
            activation=vae_activation,
            out_lambda=lambda x: x.view(x.shape[0], current_shape[0] * 2,
                                        current_shape[1], current_shape[2])),
                                    split_dim=1)

        transforms.append(VAE(encoder=encoder, decoder=decoder))

        # Base distribution for non-dimension preserving portion of flow
        #self.latent_size = latent_size
        if base_distributions[-1] == "n":
            base1 = StandardNormal((latent_size, ))
        elif base_distributions[-1] == "c":
            base1 = ConvNormal2d((latent_size, ))
        elif base_distributions[-1] == "u":
            base1 = StandardUniform((latent_size, ))
        else:
            raise ValueError(
                "Base distribution must be one of n=Noraml, u=Uniform, or c=ConvNormal"
            )

        super(VAECompressiveFlow, self).__init__(base_dist=[base0, base1],
                                                 transforms=transforms)
                                in_lambda=lambda x: 2 * x.view(x.shape[0], 784).float() - 1))
decoder = ConditionalBernoulli(MLP(latent_sizes[0], 784,
                                   hidden_units=[512,256],
                                   activation='relu',
                                   out_lambda=lambda x: x.view(x.shape[0], 1, 28, 28)))

encoder2 = ConditionalNormal(MLP(latent_sizes[0], 2*latent_sizes[1],
                                 hidden_units=[256,128],
                                 activation='relu'))
decoder2 = ConditionalNormal(MLP(latent_sizes[1], 2*latent_sizes[0],
                                 hidden_units=[256,128],
                                 activation='relu'))

model = Flow(base_dist=StandardNormal((latent_sizes[-1],)),
             transforms=[
                VAE(encoder=encoder, decoder=decoder),
                VAE(encoder=encoder2, decoder=decoder2),
             ]).to(device)

###########
## Optim ##
###########

optimizer = Adam(model.parameters(), lr=1e-3)

###########
## Train ##
###########

print('Training...')
for epoch in range(20):
Beispiel #8
0
encoder = ConditionalNormal(
    MLP(784,
        2 * latent_size,
        hidden_units=[512, 256],
        activation='relu',
        in_lambda=lambda x: 2 * x.view(x.shape[0], 784).float() - 1))
decoder = ConditionalBernoulli(
    MLP(latent_size,
        784,
        hidden_units=[512, 256],
        activation='relu',
        out_lambda=lambda x: x.view(x.shape[0], 1, 28, 28)))

model = Flow(base_dist=StandardNormal((latent_size, )),
             transforms=[VAE(encoder=encoder, decoder=decoder)]).to(device)

###########
## Optim ##
###########

optimizer = Adam(model.parameters(), lr=1e-3)

###########
## Train ##
###########

print('Training...')
for epoch in range(15):
    l = 0.0
    for i, x in enumerate(train_loader):