def __init__(self,y,x):
		assert len(y) == len(x)
		self.prob = prob = svmc.new_svm_problem()
		self.size = size = len(y)

		self.y_array = y_array = svmc.new_double(size)
		for i in range(size):
			svmc.double_setitem(y_array,i,y[i])

		self.x_matrix = x_matrix = svmc.svm_node_matrix(size)
		self.data = []
		self.maxlen = 0;
		for i in range(size):
			data = _convert_to_svm_node_array(x[i])
			self.data.append(data);
			svmc.svm_node_matrix_set(x_matrix,i,data)
			if type(x[i]) == dict:
				if (len(x[i]) > 0):
					self.maxlen = max(self.maxlen,max(x[i].keys()))
			else:
				self.maxlen = max(self.maxlen,len(x[i]))

		svmc.svm_problem_l_set(prob,size)
		svmc.svm_problem_y_set(prob,y_array)
		svmc.svm_problem_x_set(prob,x_matrix)
def cross_validation(prob, param, fold):
	if param.gamma == 0:
		param.gamma = 1.0/prob.maxlen
	dblarr = svmc.new_double(prob.size)
	svmc.svm_cross_validation(prob.prob, param.param, fold, dblarr)
	ret = _double_array_to_list(dblarr, prob.size)
	svmc.delete_double(dblarr)
	return ret
def _double_array(seq):
	size = len(seq)
	array = svmc.new_double(size)
	i = 0
	for item in seq:
		svmc.double_setitem(array,i,item)
		i = i + 1
	return array
	def predict_values_raw(self,x):
		#convert x into svm_node, allocate a double array for return
		n = self.nr_class*(self.nr_class-1)//2
		data = _convert_to_svm_node_array(x)
		dblarr = svmc.new_double(n)
		svmc.svm_predict_values(self.model, data, dblarr)
		ret = _double_array_to_list(dblarr, n)
		svmc.delete_double(dblarr)
		svmc.svm_node_array_destroy(data)
		return ret
	def predict_probability(self,x):
		#c code will do nothing on wrong type, so we have to check ourself
		if self.svm_type == NU_SVR or self.svm_type == EPSILON_SVR:
			raise TypeError, "call get_svr_probability or get_svr_pdf for probability output of regression"
		elif self.svm_type == ONE_CLASS:
			raise TypeError, "probability not supported yet for one-class problem"
		#only C_SVC,NU_SVC goes in
		if not self.probability:
			raise TypeError, "model does not support probabiliy estimates"

		#convert x into svm_node, alloc a double array to receive probabilities
		data = _convert_to_svm_node_array(x)
		dblarr = svmc.new_double(self.nr_class)
		pred = svmc.svm_predict_probability(self.model, data, dblarr)
		pv = _double_array_to_list(dblarr, self.nr_class)
		svmc.delete_double(dblarr)
		svmc.svm_node_array_destroy(data)
		p = {}
		for i in range(len(self.labels)):
			p[self.labels[i]] = pv[i]
		return pred, p