Beispiel #1
0
def learn():
    labels = get_labels()
    # mlr = MultiLogisticRegression(labels, conf.lr_inputs)
    svm = Svm()
    dataset = list(read_examples('data'))

    rd.shuffle(dataset)
    m = len(dataset)
    train_m = int(0.7 * m)
    train_set = dataset[:train_m]
    test_set = dataset[train_m:]
    test_m = len(test_set)
    print('Learning...')
    svm.learn(train_set)
    print('Learnt')


    correct = 0
    for x, y in train_set:
        pred = svm.get(x)
        if pred == y:
            correct += 1
    print('Results on train set: {:2f}% accuracy'.format(100 * correct / train_m))

    correct = 0
    for x, y in test_set:
        pred = svm.get(x)
        if pred == y:
            correct += 1
    print('Results on test set: {:2f}% accuracy'.format(100 * correct / test_m))
    with open('trained_data.pickle.b64', 'w') as wf:
        wf.write(svm.export_model())
    print('Weights written to trained_data.pickle.b64')
Beispiel #2
0
def recognize():
    with AudioRecorder(rate=conf.sampling_rate) as recorder:
        svm = Svm()
        with open('trained_data.pickle.b64') as f:
            svm.import_model(f.read())
        while True:
            print()
            print('\x1b[A\x1b[2K' 'Press Enter to start recording or Ctrl+C to exit')
            input()
            recorder.start_recording()
            print('\x1b[A\x1b[2K' '\x1b[31mREC\x1b[0m Press Enter to stop recording')
            input()
            data = list(recorder.bytes_to_numseq(recorder.finish_recording()))
            transformed_data = list(sliding_diff(data, conf.sliding_diff_winsize))
            scaled_data = scale_array(transformed_data, conf.svm_inputs)
            pred = svm.get(scaled_data)
            print('\x1b[A\x1b[2K' 'Predicted output: {}'.format(pred))