def _stop_training(self):
        super(ShogunSVMClassifier, self)._stop_training()
        self.normalizer = _LabelNormalizer(self.labels)
        labels = self.normalizer.normalize(self.labels)
        # shogun expects float labels
        labels = sgFeatures.Labels(labels.astype(float))

        features = sgFeatures.RealFeatures(self.data.transpose())

        self.classifier.set_train_features(features, labels)
        self.classifier.train()
Beispiel #2
0
    def _stop_training(self):
        super(ShogunSVMClassifier, self)._stop_training()
        self.normalizer = _LabelNormalizer(self.labels)
        labels = self.normalizer.normalize(self.labels)
        # shogun expects float labels
        labels = sgFeatures.Labels(labels.astype(float))

        features = sgFeatures.RealFeatures(self.data.transpose())

        self.classifier.set_train_features(features, labels)
        self.classifier.train()
    def _stop_training(self):
        super(LibSVMClassifier, self)._stop_training()
        self.normalizer = _LabelNormalizer(self.labels)
                
        labels = self.normalizer.normalize(self.labels.tolist())
        features = self.data

        # Call svm training method.
        prob = libsvmutil.svm_problem(labels, features.tolist())
        # Train
        self.model = libsvmutil.svm_train(prob, self.parameter)
Beispiel #4
0
    def _stop_training(self):
        super(LibSVMClassifier, self)._stop_training()
        self.normalizer = _LabelNormalizer(self.labels)

        labels = self.normalizer.normalize(self.labels.tolist())
        features = self.data

        # Call svm training method.
        prob = libsvmutil.svm_problem(labels, features.tolist())
        # Train
        self.model = libsvmutil.svm_train(prob, self.parameter)