def predict_values_raw(self, x):
     #convert x into svm_node, allocate a double array for return
     n = self.nr_class * (self.nr_class - 1) // 2
     data = _convert_to_svm_node_array(x)
     dblarr = svmc.new_double(n)
     svmc.svm_predict_values(self.model, data, dblarr)
     ret = _double_array_to_list(dblarr, n)
     svmc.delete_double(dblarr)
     svmc.svm_node_array_destroy(data)
     return ret
	def predict_values_raw(self,x):
		#convert x into svm_node, allocate a double array for return
		n = self.nr_class*(self.nr_class-1)//2
		data = _convert_to_svm_node_array(x)
		dblarr = svmc.new_double(n)
		svmc.svm_predict_values(self.model, data, dblarr)
		ret = _double_array_to_list(dblarr, n)
		svmc.delete_double(dblarr)
		svmc.svm_node_array_destroy(data)
		return ret
Beispiel #3
0
    def predict_probability(self, x):
        # c code will do nothing on wrong type, so we have to check ourself
        if self.svm_type == NU_SVR or self.svm_type == EPSILON_SVR:
            raise TypeError, "call get_svr_probability or get_svr_pdf for probability output of regression"
        elif self.svm_type == ONE_CLASS:
            raise TypeError, "probability not supported yet for one-class problem"
        # only C_SVC,NU_SVC goes in
        if not self.probability:
            raise TypeError, "model does not support probabiliy estimates"

        # convert x into svm_node, alloc a double array to receive probabilities
        data = _convert_to_svm_node_array(x)
        dblarr = svmc.new_double(self.nr_class)
        pred = svmc.svm_predict_probability(self.model, data, dblarr)
        pv = _double_array_to_list(dblarr, self.nr_class)
        svmc.delete_double(dblarr)
        svmc.svm_node_array_destroy(data)
        p = {}
        for i in range(len(self.labels)):
            p[self.labels[i]] = pv[i]
        return pred, p
	def predict_probability(self,x):
		#c code will do nothing on wrong type, so we have to check ourself
		if self.svm_type == NU_SVR or self.svm_type == EPSILON_SVR:
			raise TypeError, "call get_svr_probability or get_svr_pdf for probability output of regression"
		elif self.svm_type == ONE_CLASS:
			raise TypeError, "probability not supported yet for one-class problem"
		#only C_SVC,NU_SVC goes in
		if not self.probability:
			raise TypeError, "model does not support probabiliy estimates"

		#convert x into svm_node, alloc a double array to receive probabilities
		data = _convert_to_svm_node_array(x)
		dblarr = svmc.new_double(self.nr_class)
		pred = svmc.svm_predict_probability(self.model, data, dblarr)
		pv = _double_array_to_list(dblarr, self.nr_class)
		svmc.delete_double(dblarr)
		svmc.svm_node_array_destroy(data)
		p = {}
		for i in range(len(self.labels)):
			p[self.labels[i]] = pv[i]
		return pred, p
 def predict(self, x):
     data = _convert_to_svm_node_array(x)
     ret = svmc.svm_predict(self.model, data)
     svmc.svm_node_array_destroy(data)
     return ret
 def __del__(self):
     svmc.delete_svm_problem(self.prob)
     svmc.delete_double(self.y_array)
     for i in range(self.size):
         svmc.svm_node_array_destroy(self.data[i])
     svmc.svm_node_matrix_destroy(self.x_matrix)
	def predict(self,x):
		data = _convert_to_svm_node_array(x)
		ret = svmc.svm_predict(self.model,data)
		svmc.svm_node_array_destroy(data)
		return ret
	def __del__(self):
		svmc.delete_svm_problem(self.prob)
		svmc.delete_double(self.y_array)
		for i in range(self.size):
			svmc.svm_node_array_destroy(self.data[i])
		svmc.svm_node_matrix_destroy(self.x_matrix)