def proto_avgRange(theABF, m1=1.0, m2=1.1): """experiment: generic VC time course experiment.""" abf = ABF(theABF) abf.log.info("analyzing as a fast IV") plot = ABFplot(abf) plt.figure(figsize=(SQUARESIZE * 2, SQUARESIZE / 2)) plt.subplot(121) plot.title = "first sweep" plot.figure_sweep() plt.axvspan(m1, m2, color='r', ec=None, alpha=.1) plt.subplot(122) plt.grid(alpha=.5) Ts = np.arange(abf.sweeps) * abf.sweepInterval Ys = np.empty(abf.sweeps) * np.nan for sweep in range(abf.sweeps): Ys[sweep] = abf.average(m1, m2, setsweep=sweep) for i, t in enumerate(abf.comment_times): plt.axvline(t / 60, color='r', alpha=.5, lw=2, ls='--') plt.plot(Ts / 60, Ys, '.') plt.title(str(abf.comment_tags)) plt.ylabel(abf.units2) plt.xlabel("minutes") plt.tight_layout() frameAndSave(abf, "sweep vs average", "experiment") plt.close('all')
def proto_0203(theABF): """protocol: vast IV.""" abf = ABF(theABF) abf.log.info("analyzing as a fast IV") plot = ABFplot(abf) plot.title = "" m1, m2 = .7, 1 plt.figure(figsize=(SQUARESIZE, SQUARESIZE / 2)) plt.subplot(121) plot.figure_sweeps() plt.axvspan(m1, m2, color='r', ec=None, alpha=.1) plt.subplot(122) plt.grid(alpha=.5) Xs = np.arange(abf.sweeps) * 5 - 110 Ys = [] for sweep in range(abf.sweeps): abf.setsweep(sweep) Ys.append(abf.average(m1, m2)) plt.plot(Xs, Ys, '.-', ms=10) plt.axvline(-70, color='r', ls='--', lw=2, alpha=.5) plt.axhline(0, color='r', ls='--', lw=2, alpha=.5) plt.margins(.1, .1) plt.xlabel("membrane potential (mV)") # save it plt.tight_layout() frameAndSave(abf, "fast IV") plt.close('all')
def proto_avgRange(theABF, m1=None, m2=None): """experiment: generic VC time course experiment.""" abf = ABF(theABF) abf.log.info("analyzing as a fast IV") if m1 is None: m1 = abf.sweepLength if m2 is None: m2 = abf.sweepLength I1 = int(abf.pointsPerSec * m1) I2 = int(abf.pointsPerSec * m2) Ts = np.arange(abf.sweeps) * abf.sweepInterval Yav = np.empty(abf.sweeps) * np.nan # average Ysd = np.empty(abf.sweeps) * np.nan # standard deviation #Yar=np.empty(abf.sweeps)*np.nan # area for sweep in abf.setsweeps(): Yav[sweep] = np.average(abf.sweepY[I1:I2]) Ysd[sweep] = np.std(abf.sweepY[I1:I2]) #Yar[sweep]=np.sum(abf.sweepY[I1:I2])/(I2*I1)-Yav[sweep] plot = ABFplot(abf) plt.figure(figsize=(SQUARESIZE * 2, SQUARESIZE / 2)) plt.subplot(131) plot.title = "first sweep" plot.figure_sweep(0) plt.title("First Sweep\n(shaded measurement range)") plt.axvspan(m1, m2, color='r', ec=None, alpha=.1) plt.subplot(132) plt.grid(alpha=.5) for i, t in enumerate(abf.comment_times): plt.axvline(t / 60, color='r', alpha=.5, lw=2, ls='--') plt.plot(Ts / 60, Yav, '.', alpha=.75) plt.title("Range Average\nTAGS: %s" % (", ".join(abf.comment_tags))) plt.ylabel(abf.units2) plt.xlabel("minutes") plt.margins(0, .1) plt.subplot(133) plt.grid(alpha=.5) for i, t in enumerate(abf.comment_times): plt.axvline(t / 60, color='r', alpha=.5, lw=2, ls='--') plt.plot(Ts / 60, Ysd, '.', alpha=.5, color='g', ms=15, mew=0) #plt.fill_between(Ts/60,Ysd*0,Ysd,lw=0,alpha=.5,color='g') plt.title("Range Standard Deviation\nTAGS: %s" % (", ".join(abf.comment_tags))) plt.ylabel(abf.units2) plt.xlabel("minutes") plt.margins(0, .1) plt.axis([None, None, 0, np.percentile(Ysd, 99) * 1.25]) plt.tight_layout() frameAndSave(abf, "sweep vs average", "experiment") plt.close('all')
def proto_0222(theABF): """protocol: VC sine sweep.""" abf = ABF(theABF) abf.log.info("analyzing as VC sine sweep") plot = ABFplot(abf) plot.figure_height, plot.figure_width = SQUARESIZE / 2, SQUARESIZE / 2 plot.figure_sweeps() plt.tight_layout() frameAndSave(abf, "VC sine sweep") plt.close('all')
def proto_gain(theABF, stepSize=25, startAt=-100): """protocol: gain function of some sort. step size and start at are pA.""" abf = ABF(theABF) abf.log.info("analyzing as an IC ramp") plot = ABFplot(abf) plot.kwargs["lw"] = .5 plot.title = "" currents = np.arange(abf.sweeps) * stepSize - startAt # AP detection ap = AP(abf) ap.detect_time1 = .1 ap.detect_time2 = .7 ap.detect() # stacked plot plt.figure(figsize=(SQUARESIZE, SQUARESIZE)) ax1 = plt.subplot(221) plot.figure_sweeps() ax2 = plt.subplot(222) ax2.get_yaxis().set_visible(False) plot.figure_sweeps(offsetY=150) # add vertical marks to graphs: for ax in [ax1, ax2]: for limit in [ap.detect_time1, ap.detect_time2]: ax.axvline(limit, color='r', ls='--', alpha=.5, lw=2) # make stacked gain function ax4 = plt.subplot(223) plt.ylabel("frequency (Hz)") plt.ylabel("seconds") plt.grid(alpha=.5) freqs = ap.get_bySweep("freqs") times = ap.get_bySweep("times") for i in range(abf.sweeps): if len(freqs[i]): plt.plot(times[i][:-1], freqs[i], '-', alpha=.5, lw=2, color=plot.getColor(i / abf.sweeps)) # make gain function graph ax4 = plt.subplot(224) ax4.grid(alpha=.5) plt.plot(currents, ap.get_bySweep("median"), 'b.-', label="median") plt.plot(currents, ap.get_bySweep("firsts"), 'g.-', label="first") plt.xlabel("applied current (pA)") plt.legend(loc=2, fontsize=10) plt.axhline(40, color='r', alpha=.5, ls="--", lw=2) plt.margins(.02, .1) # save it plt.tight_layout() frameAndSave(abf, "AP Gain %d_%d" % (startAt, stepSize)) plt.close('all')
def proto_0201(theABF): """protocol: membrane test.""" abf = ABF(theABF) abf.log.info("analyzing as a membrane test") plot = ABFplot(abf) plot.figure_height, plot.figure_width = SQUARESIZE / 2, SQUARESIZE / 2 plot.figure_sweeps() # save it plt.tight_layout() frameAndSave(abf, "membrane test") plt.close('all')
def proto_unknown(theABF): """protocol: unknown.""" abf = ABF(theABF) abf.log.info("analyzing as an unknown protocol") plot = ABFplot(abf) plot.rainbow = False plot.title = None plot.figure_height, plot.figure_width = SQUARESIZE, SQUARESIZE plot.kwargs["lw"] = .5 plot.figure_chronological() plt.gca().set_axis_bgcolor( '#AAAAAA') # different background if unknown protocol frameAndSave(abf, "UNKNOWN")
def proto_0202(theABF): """protocol: MTIV.""" abf = ABF(theABF) abf.log.info("analyzing as MTIV") plot = ABFplot(abf) plot.figure_height, plot.figure_width = SQUARESIZE, SQUARESIZE plot.title = "" plot.kwargs["alpha"] = .6 plot.figure_sweeps() # frame to uppwer/lower bounds, ignoring peaks from capacitive transients abf.setsweep(0) plt.axis([None, None, abf.average(.9, 1) - 100, None]) abf.setsweep(-1) plt.axis([None, None, None, abf.average(.9, 1) + 100]) # save it plt.tight_layout() frameAndSave(abf, "MTIV") plt.close('all')
def proto_gain(theABF, stepSize=25, startAt=-100): """protocol: gain function of some sort. step size and start at are pA.""" abf = ABF(theABF) abf.log.info("analyzing as an IC ramp") plot = ABFplot(abf) plot.kwargs["lw"] = .5 plot.title = "" currents = np.arange(abf.sweeps) * stepSize - startAt # AP detection ap = AP(abf) ap.detect_time1 = .1 ap.detect_time2 = .7 ap.detect() # stacked plot plt.figure(figsize=(SQUARESIZE, SQUARESIZE)) ax1 = plt.subplot(221) plot.figure_sweeps() ax2 = plt.subplot(222) ax2.get_yaxis().set_visible(False) plot.figure_sweeps(offsetY=150) # add vertical marks to graphs: for ax in [ax1, ax2]: for limit in [ap.detect_time1, ap.detect_time2]: ax.axvline(limit, color='r', ls='--', alpha=.5, lw=2) # make stacked gain function ax4 = plt.subplot(223) plt.ylabel("frequency (Hz)") plt.ylabel("seconds") plt.grid(alpha=.5) freqs = ap.get_bySweep("freqs") times = ap.get_bySweep("times") for i in range(abf.sweeps): if len(freqs[i]): plt.plot(times[i][:-1], freqs[i], '-', alpha=.5, lw=2, color=plot.getColor(i / abf.sweeps)) # make gain function graph ax4 = plt.subplot(224) ax4.grid(alpha=.5) plt.plot(currents, ap.get_bySweep("median"), 'b.-', label="median") plt.plot(currents, ap.get_bySweep("firsts"), 'g.-', label="first") plt.xlabel("applied current (pA)") plt.legend(loc=2, fontsize=10) plt.axhline(40, color='r', alpha=.5, ls="--", lw=2) plt.margins(.02, .1) # save it plt.tight_layout() frameAndSave(abf, "AP Gain %d_%d" % (startAt, stepSize)) plt.close('all') # make a second figure that just shows every sweep up to the first AP plt.figure(figsize=(SQUARESIZE, SQUARESIZE)) plt.grid(alpha=.5) plt.ylabel("Membrane Potential (mV)") plt.xlabel("Time (seconds)") for sweep in abf.setsweeps(): plt.plot(abf.sweepX2, abf.sweepY, color='b', alpha=.5) if np.max(abf.sweepY > 0): break plt.tight_layout() plt.margins(0, .1) plt.axis([0, 1, None, None]) plt.title("%d pA Steps from Rest" % stepSize) frameAndSave(abf, "voltage response fromRest", closeWhenDone=False) plt.axis([1.5, 2.5, None, None]) plt.title("%d pA Steps from %d pA" % (stepSize, startAt)) frameAndSave(abf, "voltage response hyperpol", closeWhenDone=False) plt.close('all')