Beispiel #1
0
def proto_0101(theABF):
    abf = ABF(theABF)
    abf.log.info("analyzing as an IC tau")
    #plot=ABFplot(abf)

    plt.figure(figsize=(SQUARESIZE / 2, SQUARESIZE / 2))
    plt.grid()
    plt.ylabel("relative potential (mV)")
    plt.xlabel("time (sec)")
    m1, m2 = [.05, .1]
    for sweep in range(abf.sweeps):
        abf.setsweep(sweep)
        plt.plot(abf.sweepX2,
                 abf.sweepY - abf.average(m1, m2),
                 alpha=.2,
                 color='#AAAAFF')
    average = abf.averageSweep()
    average -= np.average(
        average[int(m1**abf.pointsPerSec):int(m2 * abf.pointsPerSec)])
    plt.plot(abf.sweepX2, average, color='b', lw=2, alpha=.5)
    plt.axvspan(m1, m2, color='r', ec=None, alpha=.1)
    plt.axhline(0, color='r', ls="--", alpha=.5, lw=2)
    plt.margins(0, .1)

    # save it
    plt.tight_layout()
    frameAndSave(abf, "IC tau")
    plt.close('all')
Beispiel #2
0
def proto_0203(theABF):
    """protocol: vast IV."""
    abf = ABF(theABF)
    abf.log.info("analyzing as a fast IV")
    plot = ABFplot(abf)
    plot.title = ""
    m1, m2 = .7, 1
    plt.figure(figsize=(SQUARESIZE, SQUARESIZE / 2))

    plt.subplot(121)
    plot.figure_sweeps()
    plt.axvspan(m1, m2, color='r', ec=None, alpha=.1)

    plt.subplot(122)
    plt.grid(alpha=.5)
    Xs = np.arange(abf.sweeps) * 5 - 110
    Ys = []
    for sweep in range(abf.sweeps):
        abf.setsweep(sweep)
        Ys.append(abf.average(m1, m2))
    plt.plot(Xs, Ys, '.-', ms=10)
    plt.axvline(-70, color='r', ls='--', lw=2, alpha=.5)
    plt.axhline(0, color='r', ls='--', lw=2, alpha=.5)
    plt.margins(.1, .1)
    plt.xlabel("membrane potential (mV)")

    # save it
    plt.tight_layout()
    frameAndSave(abf, "fast IV")
    plt.close('all')
Beispiel #3
0
def proto_0111(theABF):
    """protocol: IC ramp for AP shape analysis."""
    abf = ABF(theABF)
    abf.log.info("analyzing as an IC ramp")

    # AP detection
    ap = AP(abf)
    ap.detect()
    firstAP = ap.APs[0]["T"]

    # also calculate derivative for each sweep
    abf.derivative = True

    # create the multi-plot figure
    plt.figure(figsize=(SQUARESIZE, SQUARESIZE))
    ax1 = plt.subplot(221)
    plt.ylabel(abf.units2)
    ax2 = plt.subplot(222, sharey=ax1)
    ax3 = plt.subplot(223)
    plt.ylabel(abf.unitsD2)
    ax4 = plt.subplot(224, sharey=ax3)

    # put data in each subplot
    for sweep in range(abf.sweeps):
        abf.setsweep(sweep)
        ax1.plot(abf.sweepX, abf.sweepY, color='b', lw=.25)
        ax2.plot(abf.sweepX, abf.sweepY, color='b')
        ax3.plot(abf.sweepX, abf.sweepD, color='r', lw=.25)
        ax4.plot(abf.sweepX, abf.sweepD, color='r')

    # modify axis
    for ax in [ax1, ax2, ax3, ax4]:  # everything
        ax.margins(0, .1)
        ax.grid(alpha=.5)
    for ax in [ax3, ax4]:  # only derivative APs
        ax.axhline(-100, color='r', alpha=.5, ls="--", lw=2)
    for ax in [ax2, ax4]:  # only zoomed in APs
        ax.get_yaxis().set_visible(False)
    ax2.axis([firstAP - .25, firstAP + .25, None, None])
    ax4.axis([firstAP - .01, firstAP + .01, None, None])

    # show message from first AP
    firstAP = ap.APs[0]
    msg = "\n".join([
        "%s = %s" % (x, str(firstAP[x])) for x in sorted(firstAP.keys())
        if not "I" in x[-2:]
    ])
    plt.subplot(221)
    plt.gca().text(0.02,
                   0.98,
                   msg,
                   transform=plt.gca().transAxes,
                   fontsize=10,
                   verticalalignment='top',
                   family='monospace')

    # save it
    plt.tight_layout()
    frameAndSave(abf, "AP shape")
    plt.close('all')
Beispiel #4
0
def proto_0911(theABF):
    abf = ABF(theABF)
    abf.log.info(
        "analyzing as paired pulse stimulation with various increasing ISIs")
    plt.figure(figsize=(8, 8))
    M1, M2 = 2.2, 2.4
    I1, I2 = int(M1 * abf.pointsPerSec), int(M2 * abf.pointsPerSec)
    Ip1 = int(2.23440 * abf.pointsPerSec)  # time of first pulse in the sweep
    pw = int(1.5 / 1000 * abf.pointsPerSec)  # pulse width in ms
    B1, B2 = 1, 2  # baseline time in seconds
    plt.axhline(0, alpha=.5, ls='--', lw=2, color='k')
    for sweep in range(abf.sweeps):
        abf.setsweep(sweep)
        Xs = abf.sweepX2[I1:I2] * 1000
        baseline = np.average(
            abf.sweepY[int(B1 * abf.pointsPerSec):int(B2 * abf.pointsPerSec)])
        Ys = abf.sweepY[I1:I2] - baseline
        Ys[Ip1 - I1:Ip1 - I1 + pw] = np.nan  # erase the first pulse
        isi = int(10 + sweep * 10)  # interspike interval (ms)
        Ip2d = int(isi / 1000 * abf.pointsPerSec)
        Ys[Ip1 - I1 + Ip2d:Ip1 - I1 + pw +
           Ip2d] = np.nan  # erase the second pulse
        plt.plot(Xs - Xs[0], Ys, alpha=.8, label="%d ms" % isi)
    plt.margins(0, .1)
    plt.legend()
    plt.grid(alpha=.4, ls='--')
    plt.title("Paired Pulse Stimuation (varied ISIs)")
    plt.ylabel("clamp current (pA) [artifacts removed]")
    plt.xlabel("time (ms) [offset by %.02f s]" % M1)
    plt.tight_layout()
    frameAndSave(abf, "pp_varied")
    plt.close('all')
Beispiel #5
0
def proto_0202(theABF):
    """protocol: MTIV."""
    abf = ABF(theABF)
    abf.log.info("analyzing as MTIV")
    plot = ABFplot(abf)
    plot.figure_height, plot.figure_width = SQUARESIZE, SQUARESIZE
    plot.title = ""
    plot.kwargs["alpha"] = .6
    plot.figure_sweeps()

    # frame to uppwer/lower bounds, ignoring peaks from capacitive transients
    abf.setsweep(0)
    plt.axis([None, None, abf.average(.9, 1) - 100, None])
    abf.setsweep(-1)
    plt.axis([None, None, None, abf.average(.9, 1) + 100])

    # save it
    plt.tight_layout()
    frameAndSave(abf, "MTIV")
    plt.close('all')
Beispiel #6
0
def proto_0912(theABF):
    abf = ABF(theABF)
    abf.log.info("analyzing as 40ms PPS experiment")

    BL1, BL2 = 1, 2  # area for baseline
    ISI = 40  # inter-stimulus-interval in ms
    Ip1 = int(2.31255 * abf.pointsPerSec)  # time of first pulse in the sweep
    Ip2 = int(Ip1 +
              (ISI / 1000) * abf.pointsPerSec)  # second pulse is 40ms later
    Ip3 = Ip2 + (Ip2 - Ip1)  # distance after Ip2 to scan for the second peak
    pw = int(3 / 1000 * abf.pointsPerSec)  # pulse width in ms
    peakTimes,peak1heights,peak2heights,peakRatios,baselines,peakTransient=[],[],[],[],[],[]
    ROI = None
    ROIpad = int(.02 * abf.pointsPerSec)

    # calculate peak ratios and all that
    for sweep in range(abf.sweeps):
        abf.setsweep(sweep)
        baseline = np.average(
            abf.sweepY[int(BL1 * abf.pointsPerSec):int(BL2 *
                                                       abf.pointsPerSec)])
        Ra = np.max(abf.sweepY[int(.51 *
                                   abf.pointsPerSec):int(.52 *
                                                         abf.pointsPerSec)])
        peakTransient.append(Ra - baseline)
        abf.sweepY = abf.sweepY - baseline
        for I in [Ip1, Ip2]:
            abf.sweepY[I:I + pw] = np.nan  # blank out each pulse
        abf.sweepY[:Ip1 -
                   int(.05 *
                       abf.pointsPerSec)] = np.nan  #blank out 50ms before P1
        abf.sweepY[Ip1 +
                   int(.15 *
                       abf.pointsPerSec):] = np.nan  #blank out 15ms after P1
        peak1 = abf.sweepY[int(Ip1):int(Ip2)]
        peak2 = abf.sweepY[int(Ip2):int(Ip3)]
        peakTimes.append(abf.sweepStart)
        peak1heights.append(np.nanmin(peak1))
        peak2heights.append(np.nanmin(peak2))
        baselines.append(baseline)
        peakRatios.append(peak2heights[-1] / peak1heights[-1])
        thisROI = abf.sweepY[int(Ip1) - ROIpad:int(Ip3) + ROIpad]
        if ROI is None:
            ROI = thisROI.flatten()
        else:
            ROI = np.vstack((ROI, thisROI.flatten()))
    peakTimes = np.array(peakTimes) / 60  # seconds to minutes

    # figure showing the averaged evoked response for certain time ranges
    avgSweeps = 3 * 5  # 3 sweeps/minute, 5 minutes
    avgLocations = [10 * 3, 20 * 3,
                    30 * 3]  # the end of the area for averaging
    plt.figure(figsize=(8, 8))
    plt.grid(alpha=.4, ls='--')
    plt.axhline(0, alpha=.5, ls='--', lw=2, color='k')
    for S2 in avgLocations:
        S1 = S2 - avgSweeps
        AV = np.average(ROI[S1:S2], axis=0)
        ER = np.std(ROI[S1:S2], axis=0)  #/np.sqrt(len(ROI))
        Xs = abf.sweepX[:len(AV)]
        plt.fill_between(Xs, AV - ER, AV + ER, alpha=.1)
        plt.plot(Xs, AV, label="sweeps %d-%d" % (S1, S2))
    plt.legend()
    plt.tight_layout()
    frameAndSave(abf, "pp_avg")
    plt.close('all')

    # figure showing peak height and ratio over time
    plt.figure(figsize=(8, 8))
    plt.subplot(211)
    comment_lines(abf)
    plt.grid(alpha=.4, ls='--')
    plt.plot(peakTimes, peak1heights, 'g.', ms=15, alpha=.6, label='pulse1')
    plt.plot(peakTimes, peak2heights, 'm.', ms=15, alpha=.6, label='pulse2')
    plt.axis([None, None, None, 0])
    plt.legend()
    plt.title("Paired Pulse Stimuation")
    plt.ylabel("Peak Amplitude (pA)")
    plt.subplot(212)
    comment_lines(abf)
    plt.grid(alpha=.4, ls='--')
    plt.axhline(100, alpha=.5, ls='--', lw=2, color='k')
    plt.plot(peakTimes, np.array(peakRatios) * 100, 'r.', ms=15, alpha=.6)
    plt.axis([None, None, 0, None])
    plt.ylabel("Paired Pulse Ratio (%)")
    plt.xlabel("Experiment Duration (minutes)")
    plt.tight_layout()
    frameAndSave(abf, "pp_experiment")
    plt.close('all')

    # figure showing baseline over time (Ih)
    plt.figure(figsize=(8, 8))

    plt.subplot(211)
    plt.grid(alpha=.4, ls='--')
    plt.plot(peakTimes, baselines, 'b.', ms=15, alpha=.6)
    plt.margins(0, .1)
    plt.axis([None, None, plt.axis()[2] - 100, plt.axis()[3] + 100])
    comment_lines(abf)
    plt.title("Holding Current (pulse baseline)")
    plt.ylabel("Clamp Current (pA)")
    #plt.xlabel("Experiment Duration (minutes)")

    plt.subplot(212)
    plt.grid(alpha=.4, ls='--')
    access = np.array(peakTransient) / peakTransient[0] * 100
    plt.plot(peakTimes, access, 'r.', ms=15, alpha=.6)
    plt.axhspan(75, 125, alpha=.1, color='k', label='+/- 25%')
    plt.margins(0, .5)
    plt.axis([None, None, 0, None])
    comment_lines(abf)
    plt.title("Access Resistance")
    plt.ylabel("Peak Transient Current (% of first)")
    plt.xlabel("Experiment Duration (minutes)")

    plt.tight_layout()
    frameAndSave(abf, "pp_baselines")
    plt.close('all')