def test_change_of_objective_is_reflected_in_low_level_solver(self):
        x = Variable('x', lb=-83.3, ub=1324422.)
        y = Variable('y', lb=-181133.3, ub=12000.)
        objective = Objective(0.3 * x + 0.4 * y, name='test', direction='max')
        self.model.objective = objective

        self.assertEqual((self.model.objective.expression -
                          (0.4 * y + 0.3 * x)).expand() - 0, 0)
        self.assertEqual(self.model.objective.direction, "max")

        self.assertEqual(glp_get_obj_coef(self.model.problem, x._index), 0.3)
        self.assertEqual(glp_get_obj_coef(self.model.problem, y._index), 0.4)
        for i in range(1, glp_get_num_cols(self.model.problem) + 1):
            if i != x._index and i != y._index:
                self.assertEqual(glp_get_obj_coef(self.model.problem, i), 0)
        z = Variable('z', lb=4, ub=4, type='integer')
        self.model.objective += 77. * z

        self.assertEqual((self.model.objective.expression -
                          (0.4 * y + 0.3 * x + 77.0 * z)).expand() - 0, 0)
        self.assertEqual(self.model.objective.direction, "max")

        self.assertEqual(glp_get_obj_coef(self.model.problem, x._index), 0.3)
        self.assertEqual(glp_get_obj_coef(self.model.problem, y._index), 0.4)
        self.assertEqual(glp_get_obj_coef(self.model.problem, z._index), 77.)
        for i in range(1, glp_get_num_cols(self.model.problem) + 1):
            if i != x._index and i != y._index and i != z._index:
                self.assertEqual(glp_get_obj_coef(self.model.problem, i), 0)
    def test_change_of_objective_is_reflected_in_low_level_solver(self):
        x = self.interface.Variable('x', lb=-83.3, ub=1324422.)
        y = self.interface.Variable('y', lb=-181133.3, ub=12000.)
        objective = self.interface.Objective(0.3 * x + 0.4 * y, name='test', direction='max')
        self.model.objective = objective

        self.assertEqual(
            (self.model.objective.expression - (0.4 * y + 0.3 * x)).expand() - 0, 0
        )
        self.assertEqual(self.model.objective.direction, "max")

        self.assertEqual(glp_get_obj_coef(self.model.problem, x._index), 0.3)
        self.assertEqual(glp_get_obj_coef(self.model.problem, y._index), 0.4)
        for i in range(1, glp_get_num_cols(self.model.problem) + 1):
            if i != x._index and i != y._index:
                self.assertEqual(glp_get_obj_coef(self.model.problem, i), 0)
        z = self.interface.Variable('z', lb=4, ub=4, type='integer')
        self.model.objective += 77. * z

        self.assertEqual(
            (self.model.objective.expression - (0.4 * y + 0.3 * x + 77.0 * z)).expand() - 0, 0
        )
        self.assertEqual(self.model.objective.direction, "max")

        self.assertEqual(glp_get_obj_coef(self.model.problem, x._index), 0.3)
        self.assertEqual(glp_get_obj_coef(self.model.problem, y._index), 0.4)
        self.assertEqual(glp_get_obj_coef(self.model.problem, z._index), 77.)
        for i in range(1, glp_get_num_cols(self.model.problem) + 1):
            if i != x._index and i != y._index and i != z._index:
                self.assertEqual(glp_get_obj_coef(self.model.problem, i), 0)
 def test_init_from_existing_problem(self):
     inner_prob = self.model.problem
     self.assertEqual(len(self.model.variables), glp_get_num_cols(inner_prob))
     self.assertEqual(len(self.model.constraints), glp_get_num_rows(inner_prob))
     self.assertEqual(self.model.variables.keys(),
                      [glp_get_col_name(inner_prob, i) for i in range(1, glp_get_num_cols(inner_prob) + 1)])
     self.assertEqual(self.model.constraints.keys(),
                      [glp_get_row_name(inner_prob, j) for j in range(1, glp_get_num_rows(inner_prob) + 1)])
 def test_change_variable_bounds(self):
     inner_prob = self.model.problem
     inner_problem_bounds = [(glp_get_col_lb(inner_prob, i), glp_get_col_ub(inner_prob, i)) for i in
                             range(1, glp_get_num_cols(inner_prob) + 1)]
     bounds = [(var.lb, var.ub) for var in self.model.variables.values()]
     self.assertEqual(bounds, inner_problem_bounds)
     for var in self.model.variables.values():
         var.lb = random.uniform(-1000, 1000)
         var.ub = random.uniform(var.lb, 1000)
     inner_problem_bounds_new = [(glp_get_col_lb(inner_prob, i), glp_get_col_ub(inner_prob, i)) for i in
                                 range(1, glp_get_num_cols(inner_prob) + 1)]
     bounds_new = [(var.lb, var.ub) for var in self.model.variables.values()]
     self.assertNotEqual(bounds, bounds_new)
     self.assertNotEqual(inner_problem_bounds, inner_problem_bounds_new)
     self.assertEqual(bounds_new, inner_problem_bounds_new)
 def test_init_from_existing_problem(self):
     inner_prob = self.model.problem
     self.assertEqual(len(self.model.variables),
                      glp_get_num_cols(inner_prob))
     self.assertEqual(len(self.model.constraints),
                      glp_get_num_rows(inner_prob))
     self.assertEqual(self.model.variables.keys(), [
         glp_get_col_name(inner_prob, i)
         for i in range(1,
                        glp_get_num_cols(inner_prob) + 1)
     ])
     self.assertEqual(self.model.constraints.keys(), [
         glp_get_row_name(inner_prob, j)
         for j in range(1,
                        glp_get_num_rows(inner_prob) + 1)
     ])
Beispiel #6
0
    def set_linear_coefficients(self, coefficients):
        if self.problem is not None:
            problem = self.problem.problem
            self.problem.update()

            num_cols = glp_get_num_cols(problem)

            ia = intArray(num_cols + 1)
            va = doubleArray(num_cols + 1)

            num_rows = glp_get_mat_row(self.problem.problem, self._index, ia, va)
            variables_and_coefficients = {var.name: coeff for var, coeff in six.iteritems(coefficients)}

            final_variables_and_coefficients = {
                glp_get_col_name(problem, ia[i]): va[i] for i in range(1, num_rows + 1)
            }
            final_variables_and_coefficients.update(variables_and_coefficients)

            ia = intArray(num_cols + 1)
            va = doubleArray(num_cols + 1)

            for i, (name, coeff) in enumerate(six.iteritems(final_variables_and_coefficients)):
                ia[i + 1] = self.problem._variables[name]._index
                va[i + 1] = float(coeff)

            glp_set_mat_row(problem, self._index, len(final_variables_and_coefficients), ia, va)
        else:
            raise Exception("Can't change coefficients if constraint is not associated with a model.")
    def set_linear_coefficients(self, coefficients):
        if self.problem is not None:
            problem = self.problem.problem

            num_cols = glp_get_num_cols(problem)

            ia = intArray(num_cols + 1)
            va = doubleArray(num_cols + 1)

            num_rows = glp_get_mat_row(self.problem.problem, self._index, ia, va)
            variables_and_coefficients = {var.name: coeff for var, coeff in six.iteritems(coefficients)}

            final_variables_and_coefficients = {
                glp_get_col_name(problem, ia[i]): va[i] for i in range(1, num_rows + 1)
            }
            final_variables_and_coefficients.update(variables_and_coefficients)

            ia = intArray(num_cols + 1)
            va = doubleArray(num_cols + 1)

            for i, (name, coeff) in enumerate(six.iteritems(final_variables_and_coefficients)):
                ia[i + 1] = self.problem._variables[name]._index
                va[i + 1] = coeff

            glp_set_mat_row(problem, self._index, len(final_variables_and_coefficients), ia, va)
        else:
            raise Exception("Can't change coefficients if constraint is not associated with a model.")
 def _add_variables(self, variables):
     for variable in variables:
         glp_add_cols(self.problem, 1)
         index = glp_get_num_cols(self.problem)
         glp_set_col_name(self.problem, index, str(variable.name))
         variable.problem = self
         self._glpk_set_col_bounds(variable)
         glp_set_col_kind(self.problem, variable.index, _VTYPE_TO_GLPK_VTYPE[variable.type])
     super(Model, self)._add_variables(variables)
Beispiel #9
0
 def _add_variables(self, variables):
     for variable in variables:
         glp_add_cols(self.problem, 1)
         index = glp_get_num_cols(self.problem)
         glp_set_col_name(self.problem, index, str(variable.name))
         variable.problem = self
         self._glpk_set_col_bounds(variable)
         glp_set_col_kind(self.problem, variable._index, _VTYPE_TO_GLPK_VTYPE[variable.type])
     super(Model, self)._add_variables(variables)
Beispiel #10
0
    def get_num_cols(self):
        'get the number of columns in the lp'

        cols = glpk.glp_get_num_cols(self.lp)

        assert cols == len(
            self.names
        ), f"lp had {cols} columns, but names list had {len(self.names)} names"

        return cols
Beispiel #11
0
def get_clocks(problem: SwigPyObject) -> Iterable[Tuple[str, float]]:
    n_recipes = 0
    for j in range(1, 1 + lp.glp_get_num_cols(problem)):
        clock = lp.glp_mip_col_val(problem, j)
        if clock:
            name = lp.glp_get_col_name(problem, j)
            yield name, clock
            n_recipes += 1

    logger.info(f'{n_recipes} recipes in rate solution.')
 def test_set_linear_coefficients_constraint(self):
     constraint = self.model.constraints.M_atp_c
     constraint.set_linear_coefficients({self.model.variables.R_Biomass_Ecoli_core_w_GAM: 666.})
     num_cols = glp_get_num_cols(self.model.problem)
     ia = intArray(num_cols + 1)
     da = doubleArray(num_cols + 1)
     index = constraint._index
     num = glp_get_mat_row(self.model.problem, index, ia, da)
     for i in range(1, num + 1):
         col_name = glp_get_col_name(self.model.problem, ia[i])
         if col_name == 'R_Biomass_Ecoli_core_w_GAM':
             self.assertEqual(da[i], 666.)
Beispiel #13
0
 def _get_expression(self):
     if self.problem is not None:
         col_num = glp_get_num_cols(self.problem.problem)
         ia = intArray(col_num + 1)
         da = doubleArray(col_num + 1)
         nnz = glp_get_mat_row(self.problem.problem, self.index, ia, da)
         constraint_variables = [self.problem._variables[glp_get_col_name(self.problem.problem, ia[i])] for i in
                                 range(1, nnz + 1)]
         expression = sympy.Add._from_args(
             [sympy.Mul._from_args((sympy.RealNumber(da[i]), constraint_variables[i - 1])) for i in
              range(1, nnz + 1)])
         self._expression = expression
     return self._expression
Beispiel #14
0
 def _get_expression(self):
     if self.problem is not None:
         col_num = glp_get_num_cols(self.problem.problem)
         ia = intArray(col_num + 1)
         da = doubleArray(col_num + 1)
         nnz = glp_get_mat_row(self.problem.problem, self._index, ia, da)
         constraint_variables = [self.problem._variables[glp_get_col_name(self.problem.problem, ia[i])] for i in
                                 range(1, nnz + 1)]
         expression = symbolics.add(
             [symbolics.mul((symbolics.Real(da[i]), constraint_variables[i - 1])) for i in
              range(1, nnz + 1)])
         self._expression = expression
     return self._expression
 def test_set_linear_coefficients_constraint(self):
     constraint = self.model.constraints.M_atp_c
     constraint.set_linear_coefficients(
         {self.model.variables.R_Biomass_Ecoli_core_w_GAM: 666.})
     num_cols = glp_get_num_cols(self.model.problem)
     ia = intArray(num_cols + 1)
     da = doubleArray(num_cols + 1)
     index = constraint._index
     num = glp_get_mat_row(self.model.problem, index, ia, da)
     for i in range(1, num + 1):
         col_name = glp_get_col_name(self.model.problem, ia[i])
         if col_name == 'R_Biomass_Ecoli_core_w_GAM':
             self.assertEqual(da[i], 666.)
Beispiel #16
0
 def _get_expression(self):
     if self.problem is not None:
         col_num = glp_get_num_cols(self.problem.problem)
         ia = intArray(col_num + 1)
         da = doubleArray(col_num + 1)
         nnz = glp_get_mat_row(self.problem.problem, self._index, ia, da)
         constraint_variables = [self.problem._variables[glp_get_col_name(self.problem.problem, ia[i])] for i in
                                 range(1, nnz + 1)]
         expression = symbolics.add(
             [symbolics.mul((symbolics.Real(da[i]), constraint_variables[i - 1])) for i in
              range(1, nnz + 1)])
         self._expression = expression
     return self._expression
 def test_change_variable_bounds(self):
     inner_prob = self.model.problem
     inner_problem_bounds = [
         (glp_get_col_lb(inner_prob, i), glp_get_col_ub(inner_prob, i))
         for i in range(1,
                        glp_get_num_cols(inner_prob) + 1)
     ]
     bounds = [(var.lb, var.ub) for var in self.model.variables.values()]
     self.assertEqual(bounds, inner_problem_bounds)
     for var in self.model.variables.values():
         var.lb = random.uniform(-1000, 1000)
         var.ub = random.uniform(var.lb, 1000)
     inner_problem_bounds_new = [
         (glp_get_col_lb(inner_prob, i), glp_get_col_ub(inner_prob, i))
         for i in range(1,
                        glp_get_num_cols(inner_prob) + 1)
     ]
     bounds_new = [(var.lb, var.ub)
                   for var in self.model.variables.values()]
     self.assertNotEqual(bounds, bounds_new)
     self.assertNotEqual(inner_problem_bounds, inner_problem_bounds_new)
     self.assertEqual(bounds_new, inner_problem_bounds_new)
Beispiel #18
0
def solve_with_glpsol(glp_prob):
    """Solve glpk problem with glpsol commandline solver. Mainly for testing purposes.

    # Examples
    # --------

    # >>> problem = glp_create_prob()
    # ... glp_read_lp(problem, None, "../tests/data/model.lp")
    # ... solution = solve_with_glpsol(problem)
    # ... print 'asdf'
    # 'asdf'
    # >>> print solution
    # 0.839784

    # Returns
    # -------
    # dict
    #     A dictionary containing the objective value (key ='objval')
    #     and variable primals.
    """
    from swiglpk import glp_get_row_name, glp_get_col_name, glp_write_lp, glp_get_num_rows, glp_get_num_cols

    row_ids = [glp_get_row_name(glp_prob, i) for i in range(1, glp_get_num_rows(glp_prob) + 1)]

    col_ids = [glp_get_col_name(glp_prob, i) for i in range(1, glp_get_num_cols(glp_prob) + 1)]

    with tempfile.NamedTemporaryFile(suffix=".lp", delete=True) as tmp_file:
        tmp_file_name = tmp_file.name
        glp_write_lp(glp_prob, None, tmp_file_name)
        cmd = ['glpsol', '--lp', tmp_file_name, '-w', tmp_file_name + '.sol', '--log', '/dev/null']
        term = check_output(cmd)
        log.info(term)

    try:
        with open(tmp_file_name + '.sol') as sol_handle:
            # print sol_handle.read()
            solution = dict()
            for i, line in enumerate(sol_handle.readlines()):
                if i <= 1 or line == '\n':
                    pass
                elif i <= len(row_ids):
                    solution[row_ids[i - 2]] = line.strip().split(' ')
                elif i <= len(row_ids) + len(col_ids) + 1:
                    solution[col_ids[i - 2 - len(row_ids)]] = line.strip().split(' ')
                else:
                    print(i)
                    print(line)
                    raise Exception("Argggh!")
    finally:
        os.remove(tmp_file_name + ".sol")
    return solution
Beispiel #19
0
def solve_with_glpsol(glp_prob):
    """Solve glpk problem with glpsol commandline solver. Mainly for testing purposes.

    # Examples
    # --------

    # >>> problem = glp_create_prob()
    # ... glp_read_lp(problem, None, "../tests/data/model.lp")
    # ... solution = solve_with_glpsol(problem)
    # ... print 'asdf'
    # 'asdf'
    # >>> print solution
    # 0.839784

    # Returns
    # -------
    # dict
    #     A dictionary containing the objective value (key ='objval')
    #     and variable primals.
    """
    from swiglpk import glp_get_row_name, glp_get_col_name, glp_write_lp, glp_get_num_rows, glp_get_num_cols

    row_ids = [glp_get_row_name(glp_prob, i) for i in range(1, glp_get_num_rows(glp_prob) + 1)]

    col_ids = [glp_get_col_name(glp_prob, i) for i in range(1, glp_get_num_cols(glp_prob) + 1)]

    with tempfile.NamedTemporaryFile(suffix=".lp", delete=True) as tmp_file:
        tmp_file_name = tmp_file.name
        glp_write_lp(glp_prob, None, tmp_file_name)
        cmd = ['glpsol', '--lp', tmp_file_name, '-w', tmp_file_name + '.sol', '--log', '/dev/null']
        term = check_output(cmd)
        log.info(term)

    try:
        with open(tmp_file_name + '.sol') as sol_handle:
            # print sol_handle.read()
            solution = dict()
            for i, line in enumerate(sol_handle.readlines()):
                if i <= 1 or line == '\n':
                    pass
                elif i <= len(row_ids):
                    solution[row_ids[i - 2]] = line.strip().split(' ')
                elif i <= len(row_ids) + len(col_ids) + 1:
                    solution[col_ids[i - 2 - len(row_ids)]] = line.strip().split(' ')
                else:
                    print(i)
                    print(line)
                    raise Exception("Argggh!")
    finally:
        os.remove(tmp_file_name + ".sol")
    return solution
Beispiel #20
0
 def get_linear_coefficients(self, variables):
     if self.problem is not None:
         num_cols = glp_get_num_cols(self.problem.problem)
         ia = intArray(num_cols + 1)
         da = doubleArray(num_cols + 1)
         nnz = glp_get_mat_row(self.problem.problem, self._index, ia, da)
         return {
             self.problem._variables[ia[i + 1] - 1]: da[i + 1]
             for i in range(nnz)
         }
     else:
         raise Exception(
             "Can't get coefficients from solver if constraint is not in a model"
         )
Beispiel #21
0
 def get_linear_coefficients(self, variables):
     if self.problem is not None:
         self.problem.update()
         num_cols = glp_get_num_cols(self.problem.problem)
         ia = intArray(num_cols + 1)
         da = doubleArray(num_cols + 1)
         nnz = glp_get_mat_row(self.problem.problem, self._index, ia, da)
         coefs = dict.fromkeys(variables, 0.0)
         coefs.update({
             self.problem._variables[ia[i + 1] - 1]: da[i + 1]
             for i in range(nnz)
             if self.problem._variables[ia[i + 1] - 1] in variables})
         return coefs
     else:
         raise Exception("Can't get coefficients from solver if constraint is not in a model")
Beispiel #22
0
 def _add_constraints(self, constraints, sloppy=False):
     super(Model, self)._add_constraints(constraints, sloppy=sloppy)
     for constraint in constraints:
         constraint._problem = None  # This needs to be dones in order to not trigger constraint._get_expression()
         glp_add_rows(self.problem, 1)
         index = glp_get_num_rows(self.problem)
         glp_set_row_name(self.problem, index, str(constraint.name))
         num_cols = glp_get_num_cols(self.problem)
         index_array = intArray(num_cols + 1)
         value_array = doubleArray(num_cols + 1)
         num_vars = 0  # constraint.variables is too expensive for large problems
         if constraint.expression.is_Atom and constraint.expression.is_Symbol:
             var = constraint.expression
             index_array[1] = var.index
             value_array[1] = 1
             num_vars += 1
         elif constraint.expression.is_Mul:
             args = constraint.expression.args
             if len(args) > 2:
                 raise Exception(
                     "Term(s) %s from constraint %s is not a proper linear term." % (args, constraint))
             coeff = float(args[0])
             var = args[1]
             index_array[1] = var.index
             value_array[1] = coeff
             num_vars += 1
         else:
             for i, term in enumerate(constraint.expression.args):
                 args = term.args
                 if args == ():
                     assert term.is_Symbol
                     coeff = 1
                     var = term
                 elif len(args) == 2:
                     assert args[0].is_Number
                     assert args[1].is_Symbol
                     var = args[1]
                     coeff = float(args[0])
                 elif len(args) > 2:
                     raise Exception(
                         "Term %s from constraint %s is not a proper linear term." % (term, constraint))
                 index_array[i + 1] = var.index
                 value_array[i + 1] = coeff
                 num_vars += 1
         glp_set_mat_row(self.problem, index, num_vars,
                         index_array, value_array)
         constraint._problem = self
         self._glpk_set_row_bounds(constraint)
Beispiel #23
0
 def _get_expression(self):
     if self.problem is not None:
         col_num = glp_get_num_cols(self.problem.problem)
         ia = intArray(col_num + 1)
         da = doubleArray(col_num + 1)
         nnz = glp_get_mat_row(self.problem.problem, self.index, ia, da)
         constraint_variables = [
             self.problem._variables[glp_get_col_name(
                 self.problem.problem, ia[i])] for i in range(1, nnz + 1)
         ]
         expression = sympy.Add._from_args([
             sympy.Mul._from_args(
                 (sympy.RealNumber(da[i]), constraint_variables[i - 1]))
             for i in range(1, nnz + 1)
         ])
         self._expression = expression
     return self._expression
Beispiel #24
0
    def set_objective(self, expression):
        """Set objective of problem."""

        if isinstance(expression, numbers.Number):
            # Allow expressions with no variables as objective,
            # represented as a number
            expression = Expression(offset=expression)

        # Clear previous objective
        for i in range(swiglpk.glp_get_num_cols(self._p)):
            swiglpk.glp_set_obj_coef(self._p, 1 + i, 0)

        for variable, value in expression.values():
            var_index = self._variables[variable]
            swiglpk.glp_set_obj_coef(self._p, var_index, value)

        swiglpk.glp_set_obj_coef(self._p, 0, expression.offset)
Beispiel #25
0
    def set_objective(self, expression):
        """Set objective of problem."""

        if isinstance(expression, numbers.Number):
            # Allow expressions with no variables as objective,
            # represented as a number
            expression = Expression(offset=expression)

        # Clear previous objective
        for i in range(swiglpk.glp_get_num_cols(self._p)):
            swiglpk.glp_set_obj_coef(self._p, 1 + i, 0)

        for variable, value in expression.values():
            var_index = self._variables[variable]
            swiglpk.glp_set_obj_coef(self._p, var_index, value)

        swiglpk.glp_set_obj_coef(self._p, 0, expression.offset)
Beispiel #26
0
 def _set_coefficients_low_level(self, variables_coefficients_dict):
     if self.problem is not None:
         problem = self.problem.problem
         indices_coefficients_dict = dict(
             [(variable.index, coefficient) for variable, coefficient in six.iteritems(variables_coefficients_dict)])
         num_cols = glp_get_num_cols(problem)
         ia = intArray(num_cols + 1)
         da = doubleArray(num_cols + 1)
         index = self.index
         num = glp_get_mat_row(self.problem.problem, index, ia, da)
         for i in range(1, num + 1):
             try:
                 da[i] = indices_coefficients_dict[ia[i]]
             except KeyError:
                 pass
         glp_set_mat_row(self.problem.problem, index, num, ia, da)
     else:
         raise Exception(
             '_set_coefficients_low_level works only if a constraint is associated with a solver instance.')
Beispiel #27
0
    def _add_constraints(self, constraints, sloppy=False):
        super(Model, self)._add_constraints(constraints, sloppy=sloppy)
        for constraint in constraints:
            constraint._problem = None  # This needs to be done in order to not trigger constraint._get_expression()
            glp_add_rows(self.problem, 1)
            index = glp_get_num_rows(self.problem)
            glp_set_row_name(self.problem, index, str(constraint.name))
            num_cols = glp_get_num_cols(self.problem)
            index_array = intArray(num_cols + 1)
            value_array = doubleArray(num_cols + 1)
            num_vars = 0  # constraint.variables is too expensive for large problems

            offset, coef_dict, _ = parse_optimization_expression(constraint, linear=True)

            num_vars = len(coef_dict)
            for i, (var, coef) in enumerate(coef_dict.items()):
                index_array[i + 1] = var._index
                value_array[i + 1] = float(coef)

            glp_set_mat_row(self.problem, index, num_vars,
                            index_array, value_array)
            constraint._problem = self
            self._glpk_set_row_bounds(constraint)
    def _add_constraints(self, constraints, sloppy=False):
        super(Model, self)._add_constraints(constraints, sloppy=sloppy)
        for constraint in constraints:
            constraint._problem = None  # This needs to be done in order to not trigger constraint._get_expression()
            glp_add_rows(self.problem, 1)
            index = glp_get_num_rows(self.problem)
            glp_set_row_name(self.problem, index, str(constraint.name))
            num_cols = glp_get_num_cols(self.problem)
            index_array = intArray(num_cols + 1)
            value_array = doubleArray(num_cols + 1)
            num_vars = 0  # constraint.variables is too expensive for large problems

            coef_dict, _ = parse_optimization_expression(constraint, linear=True)

            num_vars = len(coef_dict)
            for i, (var, coef) in enumerate(coef_dict.items()):
                index_array[i + 1] = var._index
                value_array[i + 1] = float(coef)

            glp_set_mat_row(self.problem, index, num_vars,
                            index_array, value_array)
            constraint._problem = self
            self._glpk_set_row_bounds(constraint)
Beispiel #29
0
    def _initialize_model_from_problem(self, problem):
        try:
            self.problem = problem
            glp_create_index(self.problem)
        except TypeError:
            raise TypeError("Provided problem is not a valid GLPK model.")
        row_num = glp_get_num_rows(self.problem)
        col_num = glp_get_num_cols(self.problem)
        for i in range(1, col_num + 1):
            var = Variable(
                glp_get_col_name(self.problem, i),
                lb=glp_get_col_lb(self.problem, i),
                ub=glp_get_col_ub(self.problem, i),
                problem=self,
                type=_GLPK_VTYPE_TO_VTYPE[
                    glp_get_col_kind(self.problem, i)]
            )
            # This avoids adding the variable to the glpk problem
            super(Model, self)._add_variables([var])
        variables = self.variables

        for j in range(1, row_num + 1):
            ia = intArray(col_num + 1)
            da = doubleArray(col_num + 1)
            nnz = glp_get_mat_row(self.problem, j, ia, da)
            constraint_variables = [variables[ia[i] - 1] for i in range(1, nnz + 1)]

            # Since constraint expressions are lazily retrieved from the solver they don't have to be built here
            # lhs = _unevaluated_Add(*[da[i] * constraint_variables[i - 1]
            #                         for i in range(1, nnz + 1)])
            lhs = 0

            glpk_row_type = glp_get_row_type(self.problem, j)
            if glpk_row_type == GLP_FX:
                row_lb = glp_get_row_lb(self.problem, j)
                row_ub = row_lb
            elif glpk_row_type == GLP_LO:
                row_lb = glp_get_row_lb(self.problem, j)
                row_ub = None
            elif glpk_row_type == GLP_UP:
                row_lb = None
                row_ub = glp_get_row_ub(self.problem, j)
            elif glpk_row_type == GLP_DB:
                row_lb = glp_get_row_lb(self.problem, j)
                row_ub = glp_get_row_ub(self.problem, j)
            elif glpk_row_type == GLP_FR:
                row_lb = None
                row_ub = None
            else:
                raise Exception(
                    "Currently, optlang does not support glpk row type %s"
                    % str(glpk_row_type)
                )
                log.exception()
            if isinstance(lhs, int):
                lhs = symbolics.Integer(lhs)
            elif isinstance(lhs, float):
                lhs = symbolics.Real(lhs)
            constraint_id = glp_get_row_name(self.problem, j)
            for variable in constraint_variables:
                try:
                    self._variables_to_constraints_mapping[variable.name].add(constraint_id)
                except KeyError:
                    self._variables_to_constraints_mapping[variable.name] = set([constraint_id])

            super(Model, self)._add_constraints(
                [Constraint(lhs, lb=row_lb, ub=row_ub, name=constraint_id, problem=self, sloppy=True)],
                sloppy=True
            )

        term_generator = (
            (glp_get_obj_coef(self.problem, index), variables[index - 1])
            for index in range(1, glp_get_num_cols(problem) + 1)
        )
        self._objective = Objective(
            symbolics.add(
                [symbolics.mul((symbolics.Real(term[0]), term[1])) for term in term_generator if
                 term[0] != 0.]
            ),
            problem=self,
            direction={GLP_MIN: 'min', GLP_MAX: 'max'}[glp_get_obj_dir(self.problem)])
        glp_scale_prob(self.problem, GLP_SF_AUTO)
Beispiel #30
0
 def term_generator():
     for index in range(1, glp_get_num_cols(self.problem.problem) + 1):
         coeff = glp_get_obj_coef(self.problem.problem, index)
         if coeff != 0.:
             yield (symbolics.Real(coeff), variables[index - 1])
Beispiel #31
0
    def __init__(self, problem=None, *args, **kwargs):

        super(Model, self).__init__(*args, **kwargs)

        self.configuration = Configuration()

        if problem is None:
            self.problem = glp_create_prob()
            glp_create_index(self.problem)
            if self.name is not None:
                glp_set_prob_name(self.problem, str(self.name))

        else:
            try:
                self.problem = problem
                glp_create_index(self.problem)
            except TypeError:
                raise TypeError("Provided problem is not a valid GLPK model.")
            row_num = glp_get_num_rows(self.problem)
            col_num = glp_get_num_cols(self.problem)
            for i in range(1, col_num + 1):
                var = Variable(
                    glp_get_col_name(self.problem, i),
                    lb=glp_get_col_lb(self.problem, i),
                    ub=glp_get_col_ub(self.problem, i),
                    problem=self,
                    type=_GLPK_VTYPE_TO_VTYPE[
                        glp_get_col_kind(self.problem, i)]
                )
                # This avoids adding the variable to the glpk problem
                super(Model, self)._add_variables([var])
            variables = self.variables

            for j in range(1, row_num + 1):
                ia = intArray(col_num + 1)
                da = doubleArray(col_num + 1)
                nnz = glp_get_mat_row(self.problem, j, ia, da)
                constraint_variables = [variables[ia[i] - 1] for i in range(1, nnz + 1)]

                # Since constraint expressions are lazily retrieved from the solver they don't have to be built here
                # lhs = _unevaluated_Add(*[da[i] * constraint_variables[i - 1]
                #                         for i in range(1, nnz + 1)])
                lhs = 0

                glpk_row_type = glp_get_row_type(self.problem, j)
                if glpk_row_type == GLP_FX:
                    row_lb = glp_get_row_lb(self.problem, j)
                    row_ub = row_lb
                elif glpk_row_type == GLP_LO:
                    row_lb = glp_get_row_lb(self.problem, j)
                    row_ub = None
                elif glpk_row_type == GLP_UP:
                    row_lb = None
                    row_ub = glp_get_row_ub(self.problem, j)
                elif glpk_row_type == GLP_DB:
                    row_lb = glp_get_row_lb(self.problem, j)
                    row_ub = glp_get_row_ub(self.problem, j)
                elif glpk_row_type == GLP_FR:
                    row_lb = None
                    row_ub = None
                else:
                    raise Exception(
                        "Currently, optlang does not support glpk row type %s"
                        % str(glpk_row_type)
                    )
                    log.exception()
                if isinstance(lhs, int):
                    lhs = sympy.Integer(lhs)
                elif isinstance(lhs, float):
                    lhs = sympy.RealNumber(lhs)
                constraint_id = glp_get_row_name(self.problem, j)
                for variable in constraint_variables:
                    try:
                        self._variables_to_constraints_mapping[variable.name].add(constraint_id)
                    except KeyError:
                        self._variables_to_constraints_mapping[variable.name] = set([constraint_id])

                super(Model, self)._add_constraints(
                    [Constraint(lhs, lb=row_lb, ub=row_ub, name=constraint_id, problem=self, sloppy=True)],
                    sloppy=True
                )

            term_generator = (
                (glp_get_obj_coef(self.problem, index), variables[index - 1])
                for index in range(1, glp_get_num_cols(problem) + 1)
            )
            self._objective = Objective(
                _unevaluated_Add(
                    *[_unevaluated_Mul(sympy.RealNumber(term[0]), term[1]) for term in term_generator if
                      term[0] != 0.]),
                problem=self,
                direction={GLP_MIN: 'min', GLP_MAX: 'max'}[glp_get_obj_dir(self.problem)])
        glp_scale_prob(self.problem, GLP_SF_AUTO)
Beispiel #32
0
 def term_generator():
     for index in range(1, glp_get_num_cols(self.problem.problem) + 1):
         coeff = glp_get_obj_coef(self.problem.problem, index)
         if coeff != 0.:
             yield (sympy.RealNumber(coeff), variables[index - 1])
Beispiel #33
0
def test_glpk_read_cplex():
    problem = glpk_read_cplex(TESTMODELPATH)
    nose.tools.assert_equal(glp_get_num_rows(problem), 72)
    nose.tools.assert_equal(glp_get_num_cols(problem), 95)
Beispiel #34
0
def test_glpk_read_cplex():
    problem = glpk_read_cplex(TESTMODELPATH)
    nose.tools.assert_equal(glp_get_num_rows(problem), 72)
    nose.tools.assert_equal(glp_get_num_cols(problem), 95)
 def check_dimensions(glpk_problem, model):
     """
     Tests that the glpk problem and the interface model have the same
     number of rows (constraints) and columns (variables).
     """
     assert glp_get_num_cols(glpk_problem) == len(model.variables)
Beispiel #36
0
 def check_dimensions(glpk_problem, model):
     """
     Tests that the glpk problem and the interface model have the same
     number of rows (constraints) and columns (variables).
     """
     assert glp_get_num_cols(glpk_problem) == len(model.variables)
def check_dimensions(model, glpk_problem):
    nose.tools.assert_true(glp_get_num_cols(glpk_problem) == len(model.variables))