def get_face_embedding(filename, arg_params, aux_params, sym, model): img_orig = cv2.imread(filename) img_orig = cv2.cvtColor(img_orig, cv2.COLOR_BGR2RGB) img, scale = resize(img_orig.copy(), 600, 1000) im_info = np.array([[img.shape[0], img.shape[1], scale]], dtype=np.float32) # (h, w, scale) img = np.swapaxes(img, 0, 2) img = np.swapaxes(img, 1, 2) # change to (c, h, w) order img = img[np.newaxis, :] # extend to (n, c, h, w) arg_params["data"] = mx.nd.array(img, ctx) arg_params["im_info"] = mx.nd.array(im_info, ctx) exe = sym.bind(ctx, arg_params, args_grad=None, grad_req="null", aux_states=aux_params) exe.forward(is_train=False) output_dict = {name: nd for name, nd in zip(sym.list_outputs(), exe.outputs)} rois = output_dict['rpn_rois_output'].asnumpy()[:, 1:] # first column is index scores = output_dict['cls_prob_reshape_output'].asnumpy()[0] bbox_deltas = output_dict['bbox_pred_reshape_output'].asnumpy()[0] pred_boxes = bbox_pred(rois, bbox_deltas) pred_boxes = clip_boxes(pred_boxes, (im_info[0][0], im_info[0][1])) cls_boxes = pred_boxes[:, 4:8] cls_scores = scores[:, 1] keep = np.where(cls_scores >0.6)[0] cls_boxes = cls_boxes[keep, :] cls_scores = cls_scores[keep] dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32) keep = nms(dets.astype(np.float32), 0.3) dets = dets[keep, :] bbox = dets[0, :4] roundfunc = lambda t: int(round(t/scale)) vfunc = np.vectorize(roundfunc) bbox = vfunc(bbox) f_vector, jpeg = model.get_feature(img_orig, bbox, None) fT = f_vector.T return fT
def process(self, img_color, img_dest_boxes): tic = time.time() img = cv2.cvtColor(img_color, cv2.COLOR_BGR2RGB) img, scale = self.resize(img.copy(), self.app_args.scale, self.app_args.max_scale) im_info = np.array([[img.shape[0], img.shape[1], scale]], dtype=np.float32) # (h, w, scale) img = np.swapaxes(img, 0, 2) img = np.swapaxes(img, 1, 2) # change to (c, h, w) order img = img[np.newaxis, :] # extend to (n, c, h, w) self.arg_params["data"] = mx.nd.array(img, self.ctx) self.arg_params["im_info"] = mx.nd.array(im_info, self.ctx) exe = self.sym.bind(self.ctx, self.arg_params, args_grad=None, grad_req="null", aux_states=self.aux_params) exe.forward(is_train=False) output_dict = { name: nd for name, nd in zip(self.sym.list_outputs(), exe.outputs) } rois = output_dict['rpn_rois_output'].asnumpy( )[:, 1:] # first column is index # everything below is slow... bbox_deltas = output_dict['bbox_pred_reshape_output'] bbox_deltas = bbox_deltas.asnumpy()[0] pred_boxes = bbox_pred(rois, bbox_deltas) pred_boxes = clip_boxes(pred_boxes, (im_info[0][0], im_info[0][1])) cls_boxes = pred_boxes[:, 4:8] scores = output_dict['cls_prob_reshape_output'] scores = scores.asnumpy()[0] cls_scores = scores[:, 1] keep = np.where(cls_scores >= self.app_args.thresh)[0] cls_boxes = cls_boxes[keep, :] cls_scores = cls_scores[keep] dets = np.hstack( (cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32) keep = nms(dets.astype(np.float32), self.app_args.nms_thresh) dets = dets[keep, :] toc = time.time() print("time cost is:%4.4f s" % (toc - tic)) for i in range(dets.shape[0]): bbox = dets[i, :4] cv2.rectangle( img_dest_boxes, (int(round(bbox[0] / scale)), int(round(bbox[1] / scale))), (int(round(bbox[2] / scale)), int(round(bbox[3] / scale))), (0, 255, 0), 2) return img_color
def main(): color = cv2.imread(args.img) img = cv2.cvtColor(color, cv2.COLOR_BGR2RGB) img, scale = resize(img.copy(), args.scale, args.max_scale) im_info = np.array([[img.shape[0], img.shape[1], scale]], dtype=np.float32) # (h, w, scale) img = np.swapaxes(img, 0, 2) img = np.swapaxes(img, 1, 2) # change to (c, h, w) order img = img[np.newaxis, :] # extend to (n, c, h, w) ctx = mx.gpu(args.gpu) _, arg_params, aux_params = mx.model.load_checkpoint( args.prefix, args.epoch) arg_params, aux_params = ch_dev(arg_params, aux_params, ctx) sym = resnet_50(num_class=2) arg_params["data"] = mx.nd.array(img, ctx) arg_params["im_info"] = mx.nd.array(im_info, ctx) exe = sym.bind(ctx, arg_params, args_grad=None, grad_req="null", aux_states=aux_params) tic = time.time() exe.forward(is_train=False) output_dict = { name: nd for name, nd in zip(sym.list_outputs(), exe.outputs) } rois = output_dict['rpn_rois_output'].asnumpy( )[:, 1:] # first column is index scores = output_dict['cls_prob_reshape_output'].asnumpy()[0] bbox_deltas = output_dict['bbox_pred_reshape_output'].asnumpy()[0] pred_boxes = bbox_pred(rois, bbox_deltas) pred_boxes = clip_boxes(pred_boxes, (im_info[0][0], im_info[0][1])) cls_boxes = pred_boxes[:, 4:8] cls_scores = scores[:, 1] keep = np.where(cls_scores >= args.thresh)[0] cls_boxes = cls_boxes[keep, :] cls_scores = cls_scores[keep] dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32) keep = nms(dets.astype(np.float32), args.nms_thresh) dets = dets[keep, :] toc = time.time() print("time cost is:{}s".format(toc - tic)) for i in range(dets.shape[0]): bbox = dets[i, :4] cv2.rectangle( color, (int(round(bbox[0] / scale)), int(round(bbox[1] / scale))), (int(round(bbox[2] / scale)), int(round(bbox[3] / scale))), (0, 255, 0), 2) cv2.imwrite("result.jpg", color)
def detect(nparr): img_orig = cv2.imdecode(nparr, 1) img, scale = resize(img_orig.copy(), 600, 1000) im_info = np.array([[img.shape[0], img.shape[1], scale]], dtype=np.float32) # (h, w, scale) img = np.swapaxes(img, 0, 2) img = np.swapaxes(img, 1, 2) # change to (c, h, w) order img = img[np.newaxis, :] # extend to (n, c, h, w) ctx = mx.gpu(0) _, arg_params, aux_params = mx.model.load_checkpoint('mxnet-face-fr50', 0) arg_params, aux_params = ch_dev(arg_params, aux_params, ctx) sym = resnet_50(num_class=2) arg_params["data"] = mx.nd.array(img, ctx) arg_params["im_info"] = mx.nd.array(im_info, ctx) exe = sym.bind(ctx, arg_params, args_grad=None, grad_req="null", aux_states=aux_params) tic = time.time() exe.forward(is_train=False) output_dict = { name: nd for name, nd in zip(sym.list_outputs(), exe.outputs) } rois = output_dict['rpn_rois_output'].asnumpy( )[:, 1:] # first column is index scores = output_dict['cls_prob_reshape_output'].asnumpy()[0] bbox_deltas = output_dict['bbox_pred_reshape_output'].asnumpy()[0] pred_boxes = bbox_pred(rois, bbox_deltas) pred_boxes = clip_boxes(pred_boxes, (im_info[0][0], im_info[0][1])) cls_boxes = pred_boxes[:, 4:8] cls_scores = scores[:, 1] keep = np.where(cls_scores >= 0.8)[0] cls_boxes = cls_boxes[keep, :] cls_scores = cls_scores[keep] dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32) keep = nms(dets.astype(np.float32), 0.3) dets = dets[keep, :] toc = time.time() color = cv2.cvtColor(img_orig, cv2.COLOR_RGB2BGR) print("time cost is:{}s".format(toc - tic)) for i in range(dets.shape[0]): bbox = dets[i, :4] cv2.rectangle( color, (int(round(bbox[0] / scale)), int(round(bbox[1] / scale))), (int(round(bbox[2] / scale)), int(round(bbox[3] / scale))), (0, 255, 0), 2) ret, jpeg = cv2.imencode('.png', color) return jpeg.tobytes()
def getEmbedding(model, img_orig): ctx = mx.cpu() _, arg_params, aux_params = mx.model.load_checkpoint('mxnet-face-fr50', 0) arg_params, aux_params = ch_dev(arg_params, aux_params, ctx) sym = resnet_50(num_class=2) img0, scale = resize(img_orig.copy(), 600, 1000) im_info = np.array([[img0.shape[0], img0.shape[1], scale]], dtype=np.float32) # (h, w, scale) img = np.swapaxes(img0, 0, 2) img = np.swapaxes(img, 1, 2) # change to (c, h, w) order img = img[np.newaxis, :] # extend to (n, c, h, w) arg_params["data"] = mx.nd.array(img, ctx) arg_params["im_info"] = mx.nd.array(im_info, ctx) exe = sym.bind(ctx, arg_params, args_grad=None, grad_req="null", aux_states=aux_params) exe.forward(is_train=False) output_dict = { name: nd for name, nd in zip(sym.list_outputs(), exe.outputs) } rois = output_dict['rpn_rois_output'].asnumpy( )[:, 1:] # first column is index scores = output_dict['cls_prob_reshape_output'].asnumpy()[0] bbox_deltas = output_dict['bbox_pred_reshape_output'].asnumpy()[0] pred_boxes = bbox_pred(rois, bbox_deltas) pred_boxes = clip_boxes(pred_boxes, (im_info[0][0], im_info[0][1])) cls_boxes = pred_boxes[:, 4:8] cls_scores = scores[:, 1] keep = np.where(cls_scores >= 0.6)[0] cls_boxes = cls_boxes[keep, :] cls_scores = cls_scores[keep] dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32) keep = nms(dets.astype(np.float32), 0.3) dets = dets[keep, :] print(dets.shape[0]) i = 0 bbox = dets[i, :4] roundfunc = lambda t: int(round(t / scale)) vfunc = np.vectorize(roundfunc) bbox = vfunc(bbox) f2, jpeg = model.get_feature(img_orig, bbox, None) return f2
def main(): color = cv2.imread(args.img) img = cv2.cvtColor(color, cv2.COLOR_BGR2RGB) img, scale = resize(img.copy(), args.scale, args.max_scale) im_info = np.array([[img.shape[0], img.shape[1], scale]], dtype=np.float32) # (h, w, scale) img = np.swapaxes(img, 0, 2) img = np.swapaxes(img, 1, 2) # change to (c, h, w) order img = img[np.newaxis, :] # extend to (n, c, h, w) ctx = mx.gpu(args.gpu) _, arg_params, aux_params = mx.model.load_checkpoint(args.prefix, args.epoch) arg_params, aux_params = ch_dev(arg_params, aux_params, ctx) sym = resnet_50(num_class=2) arg_params["data"] = mx.nd.array(img, ctx) arg_params["im_info"] = mx.nd.array(im_info, ctx) exe = sym.bind(ctx, arg_params, args_grad=None, grad_req="null", aux_states=aux_params) tic = time.time() exe.forward(is_train=False) output_dict = {name: nd for name, nd in zip(sym.list_outputs(), exe.outputs)} rois = output_dict['rpn_rois_output'].asnumpy()[:, 1:] # first column is index scores = output_dict['cls_prob_reshape_output'].asnumpy()[0] bbox_deltas = output_dict['bbox_pred_reshape_output'].asnumpy()[0] pred_boxes = bbox_pred(rois, bbox_deltas) pred_boxes = clip_boxes(pred_boxes, (im_info[0][0], im_info[0][1])) cls_boxes = pred_boxes[:, 4:8] cls_scores = scores[:, 1] keep = np.where(cls_scores >= args.thresh)[0] cls_boxes = cls_boxes[keep, :] cls_scores = cls_scores[keep] dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32) keep = nms(dets.astype(np.float32), args.nms_thresh) dets = dets[keep, :] toc = time.time() print "time cost is:{}s".format(toc-tic) for i in range(dets.shape[0]): bbox = dets[i, :4] cv2.rectangle(color, (int(round(bbox[0]/scale)), int(round(bbox[1]/scale))), (int(round(bbox[2]/scale)), int(round(bbox[3]/scale))), (0, 255, 0), 2) cv2.imwrite("result.jpg", color)
tic = time.time() exe.forward(is_train=False) output_dict = {name: nd for name, nd in zip(sym.list_outputs(), exe.outputs)} rois = output_dict['rpn_rois_output'].asnumpy()[:, 1:] # first column is index scores = output_dict['cls_prob_reshape_output'].asnumpy()[0] bbox_deltas = output_dict['bbox_pred_reshape_output'].asnumpy()[0] pred_boxes = bbox_pred(rois, bbox_deltas) pred_boxes = clip_boxes(pred_boxes, (im_info[0][0], im_info[0][1])) cls_boxes = pred_boxes[:, 4:8] cls_scores = scores[:, 1] keep = np.where(cls_scores >= 0.6)[0] cls_boxes = cls_boxes[keep, :] cls_scores = cls_scores[keep] dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32) keep = nms(dets.astype(np.float32), 0.3) dets = dets[keep, :] print("video position (ms): "+msg.key()) print(dets.shape[0]) toc = time.time() img_final = img_orig.copy() # color = cv2.cvtColor(img_orig, cv2.COLOR_RGB2BGR) print("time cost is:{}s".format(toc-tic)) embedding_vector = [] bbox_vector = [] for i in range(dets.shape[0]): bbox = dets[i, :4] roundfunc = lambda t: int(round(t/scale)) vfunc = np.vectorize(roundfunc) bbox = vfunc(bbox)
def forward(self, is_train, req, in_data, out_data, aux): # for each (H, W) location i # generate A anchor boxes centered on cell i # apply predicted bbox deltas at cell i to each of the A anchors # clip predicted boxes to image # remove predicted boxes with either height or width < threshold # sort all (proposal, score) pairs by score from highest to lowest # take top pre_nms_topN proposals before NMS # apply NMS with threshold 0.7 to remaining proposals # take after_nms_topN proposals after NMS # return the top proposals (-> RoIs top, scores top) pre_nms_topN = config[self.cfg_key].RPN_PRE_NMS_TOP_N post_nms_topN = config[self.cfg_key].RPN_POST_NMS_TOP_N nms_thresh = config[self.cfg_key].RPN_NMS_THRESH min_size = config[self.cfg_key].RPN_MIN_SIZE # the first set of anchors are background probabilities # keep the second part scores = in_data[0].asnumpy()[:, self._num_anchors:, :, :] if np.isnan(scores).any(): raise ValueError("there is nan in input scores") bbox_deltas = in_data[1].asnumpy() if np.isnan(bbox_deltas).any(): raise ValueError("there is nan in input bbox_deltas") im_info = in_data[2].asnumpy()[0, :] # 1. Generate proposals from bbox_deltas and shifted anchors height, width = scores.shape[-2:] if self.cfg_key == 'TRAIN': height, width = int(im_info[0] / self._feat_stride), int( im_info[1] / self._feat_stride) # Enumerate all shifts shift_x = np.arange(0, width) * self._feat_stride shift_y = np.arange(0, height) * self._feat_stride shift_x, shift_y = np.meshgrid(shift_x, shift_y) shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose() # Enumerate all shifted anchors: # # add A anchors (1, A, 4) to # cell K shifts (K, 1, 4) to get # shift anchors (K, A, 4) # reshape to (K*A, 4) shifted anchors A = self._num_anchors K = shifts.shape[0] anchors = self._anchors.reshape((1, A, 4)) + shifts.reshape( (1, K, 4)).transpose((1, 0, 2)) anchors = anchors.reshape((K * A, 4)) # Transpose and reshape predicted bbox transformations to get them # into the same order as the anchors: # # bbox deltas will be (1, 4 * A, H, W) format # transpose to (1, H, W, 4 * A) # reshape to (1 * H * W * A, 4) where rows are ordered by (h, w, a) # in slowest to fastest order bbox_deltas = clip_pad(bbox_deltas, (height, width)) bbox_deltas = bbox_deltas.transpose((0, 2, 3, 1)).reshape((-1, 4)) # Same story for the scores: # # scores are (1, A, H, W) format # transpose to (1, H, W, A) # reshape to (1 * H * W * A, 1) where rows are ordered by (h, w, a) scores = scores.transpose((0, 2, 3, 1)).reshape((-1, 1)) # Convert anchors into proposals via bbox transformations proposals = bbox_pred(anchors, bbox_deltas) # 2. clip predicted boxes to image proposals = clip_boxes(proposals, im_info[:2]) # 3. remove predicted boxes with either height or width < threshold # (NOTE: convert min_size to input image scale stored in im_info[2]) keep = ProposalOperator._filter_boxes(proposals, min_size * im_info[2]) proposals = proposals[keep, :] scores = scores[keep] # 4. sort all (proposal, score) pairs by score from highest to lowest # 5. take top pre_nms_topN (e.g. 6000) order = scores.ravel().argsort()[::-1] if pre_nms_topN > 0: order = order[:pre_nms_topN] proposals = proposals[order, :] scores = scores[order] # 6. apply nms (e.g. threshold = 0.7) # 7. take after_nms_topN (e.g. 300) # 8. return the top proposals (-> RoIs top) keep = nms(np.hstack((proposals, scores)), nms_thresh) if post_nms_topN > 0: keep = keep[:post_nms_topN] # pad to ensure output size remains unchanged if len(keep) < post_nms_topN: pad = npr.choice(keep, size=post_nms_topN - len(keep)) keep = np.hstack((keep, pad)) proposals = proposals[keep, :] scores = scores[keep] # Output rois array # Our RPN implementation only supports a single input image, so all # batch inds are 0 batch_inds = np.zeros((proposals.shape[0], 1), dtype=np.float32) blob = np.hstack((batch_inds, proposals.astype(np.float32, copy=False))) self.assign(out_data[0], req[0], blob) if self._output_score: self.assign(out_data[1], req[1], scores.astype(np.float32, copy=False))