Beispiel #1
0
def train_net(args, ctx):
    logger.auto_set_dir()

    sym_instance = resnet101_deeplab_new()
    sym = sym_instance.get_symbol(NUM_CLASSES, is_train=True,memonger=False)

    #digraph = mx.viz.plot_network(sym, save_format='pdf')
    #digraph.render()

    # setup multi-gpu
    gpu_nums = len(ctx)
    input_batch_size = args.batch_size * gpu_nums

    train_data = get_data("train", DATA_DIR, LIST_DIR, len(ctx))
    test_data = get_data("val", DATA_DIR, LIST_DIR, len(ctx))

    # infer max shape
    max_scale = [args.crop_size]
    max_data_shape = [('data', (args.batch_size, 3, max([v[0] for v in max_scale]), max([v[1] for v in max_scale])))]
    max_label_shape = [('label', (args.batch_size, 1, max([v[0] for v in max_scale]), max([v[1] for v in max_scale])))]

    # infer shape
    data_shape_dict = {'data':(args.batch_size, 3, args.crop_size[0],args.crop_size[1])
                       ,'label':(args.batch_size, 1, args.crop_size[0],args.crop_size[1])}

    pprint.pprint(data_shape_dict)
    sym_instance.infer_shape(data_shape_dict)


    eval_sym_instance = resnet101_deeplab_new()


    # load and initialize params
    epoch_string = args.load.rsplit("-",2)[1]
    begin_epoch = 1
    if not args.scratch:
        begin_epoch = int(epoch_string)
        logger.info('continue training from {}'.format(begin_epoch))
        arg_params, aux_params = load_init_param(args.load, convert=True)
    else:
        logger.info(args.load)
        arg_params, aux_params = load_init_param(args.load, convert=True)
        sym_instance.init_weights(arg_params, aux_params)

    # check parameter shapes
    sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict)

    data_names = ['data']
    label_names = ['label']

    mod = MutableModule(sym, data_names=data_names, label_names=label_names,context=ctx, max_data_shapes=[max_data_shape for _ in xrange(gpu_nums)],
                        max_label_shapes=[max_label_shape for _ in xrange(gpu_nums)], fixed_param_prefix=fixed_param_prefix)

    # decide training params
    # metric
    fcn_loss_metric = metric.FCNLogLossMetric(args.frequent)
    eval_metrics = mx.metric.CompositeEvalMetric()

    for child_metric in [fcn_loss_metric]:
        eval_metrics.add(child_metric)

    # callback
    batch_end_callbacks = [callback.Speedometer(input_batch_size, frequent=args.frequent)]
    #batch_end_callbacks = [mx.callback.ProgressBar(total=train_data.size/train_data.batch_size)]
    epoch_end_callbacks = \
        [mx.callback.module_checkpoint(mod, os.path.join(logger.get_logger_dir(),"mxnetgo"), period=1, save_optimizer_states=True),
         ]

    lr_scheduler = StepScheduler(train_data.size()*EPOCH_SCALE,lr_step_list)

    # optimizer
    optimizer_params = {
                        'wd': 0.0005,
                        'learning_rate': init_lr,
                      'lr_scheduler': lr_scheduler,
                        'rescale_grad': 1.0,
                        'clip_gradient': None}

    logger.info("epoch scale = {}".format(EPOCH_SCALE))
    mod.fit(train_data=train_data, args = args, eval_sym_instance=eval_sym_instance, eval_data=test_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callbacks,
            batch_end_callback=batch_end_callbacks, kvstore=kvstore,
            optimizer='adam', optimizer_params=optimizer_params,
            arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch,epoch_scale=EPOCH_SCALE, validation_on_last=validation_on_last)
Beispiel #2
0
def do_validation(ctx):
    #logger.auto_set_dir()
    test_data = get_data("val", DATA_DIR, LIST_DIR, len(ctx))
    ctx = [mx.gpu(int(i)) for i in args.gpu.split(',')]

    sym_instance = resnet101_deeplab_new()
    val_provide_data = [[("data", (1, 3, tile_height, tile_width))]]
    val_provide_label = [[("softmax_label", (1, 1, tile_height, tile_width))]]
    data_shape_dict = {
        'data': (1, 3, tile_height, tile_width),
        'softmax_label': (1, 1, tile_height, tile_width)
    }
    eval_sym = sym_instance.get_symbol(NUM_CLASSES, is_train=False)
    sym_instance.infer_shape(data_shape_dict)

    arg_params, aux_params = load_init_param(args.load, process=True)

    sym_instance.check_parameter_shapes(arg_params,
                                        aux_params,
                                        data_shape_dict,
                                        is_train=False)
    data_names = ['data']
    label_names = ['softmax_label']

    # create predictor
    predictor = Predictor(eval_sym,
                          data_names,
                          label_names,
                          context=ctx,
                          provide_data=val_provide_data,
                          provide_label=val_provide_label,
                          arg_params=arg_params,
                          aux_params=aux_params)

    logger.info("begin prediction.. evaluation size: {}x{}".format(
        tile_width, tile_height))
    if args.vis:
        from mxnetgo.myutils.fs import mkdir_p
        vis_dir = os.path.join(logger.get_logger_dir(), "vis")
        mkdir_p(vis_dir)
    stats = MIoUStatistics(NUM_CLASSES)
    test_data.reset_state()
    nbatch = 0
    for data, label in tqdm(test_data.get_data()):
        output_all = predict_scaler(data,
                                    predictor,
                                    scales=[0.9, 1.0, 1.1],
                                    classes=NUM_CLASSES,
                                    tile_size=(tile_height, tile_width),
                                    is_densecrf=False,
                                    nbatch=nbatch,
                                    val_provide_data=val_provide_data,
                                    val_provide_label=val_provide_label)
        output_all = np.argmax(output_all, axis=0)
        label = np.squeeze(label)
        if args.vis:
            cv2.imwrite(os.path.join(vis_dir, "{}.jpg".format(nbatch)),
                        visualize_label(output_all))
        stats.feed(output_all, label)  # very time-consuming
        nbatch += 1
    logger.info("mIoU: {}, meanAcc: {}, acc: {} ".format(
        stats.mIoU, stats.mean_accuracy, stats.accuracy))