Beispiel #1
0
def test_linearize_form_2d_3():
    """steady Euler equation."""
    domain = Domain('Omega', dim=2)

    U = VectorFunctionSpace('U', domain)
    W = ScalarFunctionSpace('W', domain)

    # Test functions
    v = element_of(U, name='v')
    phi = element_of(W, name='phi')
    q = element_of(W, name='q')

    # Steady-state fields
    U_0 = element_of(U, name='U_0')
    Rho_0 = element_of(W, name='Rho_0')
    P_0 = element_of(W, name='P_0')

    # Trial functions (displacements from steady-state)
    d_u = element_of(U, name='d_u')
    d_rho = element_of(W, name='d_rho')
    d_p = element_of(W, name='d_p')

    # Shortcut
    int_0 = lambda expr: integral(domain, expr)

    # The Euler equations are a system of three non-linear equations; for each of
    # them we create a linear form in the test functions (phi, v, q) respectively.
    e1 = div(Rho_0 * U_0)
    l1 = LinearForm(phi, int_0(e1 * phi))

    e2 = Rho_0 * convect(U_0, U_0) + grad(P_0)
    l2 = LinearForm(v, int_0(dot(e2, v)))

    e3 = div(P_0 * U_0)
    l3 = LinearForm(q, int_0(e3 * q))
    # ...

    # Linearize l1, l2 and l3 separately
    a1 = linearize(l1, fields=[Rho_0, U_0], trials=[d_rho, d_u])
    a2 = linearize(l2, fields=[Rho_0, U_0, P_0], trials=[d_rho, d_u, d_p])
    a3 = linearize(l3, fields=[U_0, P_0], trials=[d_u, d_p])

    # Check individual bilinear forms
    d_e1 = div(U_0 * d_rho + Rho_0 * d_u)
    d_e2 = d_rho * convect(U_0, U_0) + \
           Rho_0 * convect(d_u, U_0) + \
           Rho_0 * convect(U_0, d_u) + grad(d_p)
    d_e3 = div(d_p * U_0 + P_0 * d_u)

    assert a1([d_rho, d_u], phi) == int_0(d_e1 * phi)
    assert a2([d_rho, d_u, d_p], v) == int_0(dot(d_e2, v))
    assert a3([d_u, d_p], q) == int_0(d_e3 * q)

    # Linearize linear form of system: l = l1 + l2 + l3
    l = LinearForm((phi, v, q), l1(phi) + l2(v) + l3(q))
    a = linearize(l, fields=[Rho_0, U_0, P_0], trials=[d_rho, d_u, d_p])

    # Check composite linear form
    assert a([d_rho, d_u, d_p], [phi, v, q]) == \
            int_0(d_e1 * phi + dot(d_e2, v) + d_e3 * q)
Beispiel #2
0
def test_latex_2d_5():
    DIM = 2

    domain = Domain('Omega', dim=DIM)

    # ... abstract model
    W1 = VectorFunctionSpace('W1', domain)

    w1 = element_of(W1, name='w1')
    F = element_of(W1, 'F')

    int_0 = lambda expr: integral(domain, expr)

    # ...
    l1 = LinearForm(w1, int_0(dot(w1, F)))

    print(latex(l1))
    print('')
    # ...

    # ...
    l2 = LinearForm(w1, int_0(rot(w1) * rot(F) + div(w1) * div(F)))

    print(latex(l2))
    print('')
Beispiel #3
0
def test_evaluation_2d_1():
    domain = Domain('Omega', dim=2)
    B_neumann = Boundary(r'\Gamma_1', domain)

    V = FunctionSpace('V', domain)
    W = VectorFunctionSpace('W', domain)

    p, q = [TestFunction(V, name=i) for i in ['p', 'q']]
    u, v = [VectorTestFunction(W, name=i) for i in ['u', 'v']]

    alpha = Constant('alpha')

    x, y = V.coordinates
    F = Field('F', space=V)

    a1 = BilinearForm((p, q), dot(grad(p), grad(q)))
    m = BilinearForm((p, q), p * q)
    a2 = BilinearForm((p, q), a1(p, q) + alpha * m(p, q))
    a3 = BilinearForm((u, v), rot(u) * rot(v) + alpha * div(u) * div(v))

    a11 = BilinearForm((v, u), inner(grad(v), grad(u)))
    a12 = BilinearForm((v, p), div(v) * p)
    a4 = BilinearForm(((v, q), (u, p)), a11(v, u) - a12(v, p) + a12(u, q))

    l0 = LinearForm(p, F * p)
    l_neu = LinearForm(p, p * trace_1(grad(F), B_neumann))
    l = LinearForm(p, l0(p) + l_neu(p))

    # ...
    print(a1)
    print(evaluate(a1))
    print('')
    # ...

    # ...
    print(a2)
    print(evaluate(a2))
    print('')
    # ...

    # ...
    print(a3)
    print(evaluate(a3))
    print('')
    # ...

    # ...
    print(a4)
    print(evaluate(a4))
    print('')
    # ...

    # ...
    print(l)
    print(evaluate(l))
    print('')
Beispiel #4
0
def test_calculus_2d_1():
    domain = Domain('Omega', dim=2)

    V = ScalarFunctionSpace('V', domain)
    W = VectorFunctionSpace('W', domain)

    alpha, beta, gamma = [Constant(i) for i in ['alpha', 'beta', 'gamma']]

    f, g, h = elements_of(V, names='f, g, h')
    F, G, H = elements_of(W, names='F, G, H')

    # ... scalar gradient properties
    assert (grad(f + g) == grad(f) + grad(g))
    assert (grad(alpha * h) == alpha * grad(h))
    assert (grad(alpha * f + beta * g) == alpha * grad(f) + beta * grad(g))

    assert (grad(f * g) == f * grad(g) + g * grad(f))
    assert (grad(f / g) == -f * grad(g) / g**2 + grad(f) / g)

    assert (expand(grad(f * g * h)) == f * g * grad(h) + f * h * grad(g) +
            g * h * grad(f))
    # ...

    # ... vector gradient properties
    assert (grad(F + G) == grad(F) + grad(G))
    assert (grad(alpha * H) == alpha * grad(H))
    assert (grad(alpha * F + beta * G) == alpha * grad(F) + beta * grad(G))

    assert (grad(dot(F, G)) == convect(F, G) + convect(G, F) +
            cross(F, curl(G)) - cross(curl(F), G))
    # ...

    # ... curl properties
    assert (curl(f + g) == curl(f) + curl(g))
    assert (curl(alpha * h) == alpha * curl(h))
    assert (curl(alpha * f + beta * g) == alpha * curl(f) + beta * curl(g))
    # ...

    # ... laplace properties
    assert (laplace(f + g) == laplace(f) + laplace(g))
    assert (laplace(alpha * h) == alpha * laplace(h))
    assert (laplace(alpha * f + beta * g) == alpha * laplace(f) +
            beta * laplace(g))
    # ...

    # ... divergence properties
    assert (div(F + G) == div(F) + div(G))
    assert (div(alpha * H) == alpha * div(H))
    assert (div(alpha * F + beta * G) == alpha * div(F) + beta * div(G))

    assert (div(cross(F, G)) == -dot(F, curl(G)) + dot(G, curl(F)))
    # ...

    # ... rot properties
    assert (rot(F + G) == rot(F) + rot(G))
    assert (rot(alpha * H) == alpha * rot(H))
    assert (rot(alpha * F + beta * G) == alpha * rot(F) + beta * rot(G))
Beispiel #5
0
def test_tensorize_2d_2():

    domain = Domain('Omega', dim=2)

    V = VectorFunctionSpace('V', domain)
    u, v = elements_of(V, names='u, v')

    int_0 = lambda expr: integral(domain , expr)
    # ...
#    a = BilinearForm((u,v), dot(u,v))
    a = BilinearForm((u,v), int_0(curl(u)*curl(v) + div(u)*div(v)))

    expr = TensorExpr(a, domain=domain)
    print(expr)
Beispiel #6
0
def test_projector_2d_1():

    DIM = 2
    domain = Domain('Omega', dim=DIM)

    V = ScalarFunctionSpace('V', domain, kind=None)
    W = VectorFunctionSpace('W', domain, kind=None)

    v, w = element_of(V * W, ['v', 'w'])

    # ...
    P_V = Projector(V)
    assert (P_V.space == V)

    Pv = P_V(v)
    assert (isinstance(Pv, ScalarTestFunction))
    assert (Pv == v)
    assert (grad(Pv**2) == 2 * v * grad(v))

    Pdiv_w = P_V(div(w))
    assert (isinstance(Pdiv_w, ScalarTestFunction))
    # ...

    # ...
    P_W = Projector(W)
    assert (P_W.space == W)

    Pw = P_W(w)
    assert (isinstance(Pw, VectorTestFunction))
    assert (Pw == w)

    Pgrad_v = P_W(grad(v))
    assert (isinstance(Pgrad_v, VectorTestFunction))
    assert (P_W(Pgrad_v) == Pgrad_v)
Beispiel #7
0
def test_latex_2d_2():

    DIM = 2
    domain = Domain('Omega', dim=DIM)

    V = VectorFunctionSpace('V', domain)

    x, y = V.coordinates

    v = element_of(V, name='v')
    u = element_of(V, name='u')
    #    F = element_of(V, name='F')

    int_0 = lambda expr: integral(domain, expr)

    assert (latex(v) == r'\mathbf{v}')
    assert (latex(inner(
        grad(v), grad(u))) == r'\nabla{\mathbf{u}} : \nabla{\mathbf{v}}')

    a = BilinearForm((v, u), int_0(inner(grad(v), grad(u))))
    print(latex(a))
    #    assert(latex(a) == r'\int_{0}^{1}\int_{0}^{1} \nabla{\mathbf{v}} : \nabla{\mathbf{u}} dxdy')

    b = LinearForm(v, int_0(sin(pi * x) * cos(pi * y) * div(v)))
    print(latex(b))
Beispiel #8
0
def test_terminal_expr_linear_2d_2():

    domain = Domain('Omega', dim=2)
    B1 = Boundary(r'\Gamma_1', domain)

    x, y = domain.coordinates

    kappa = Constant('kappa', is_real=True)
    mu = Constant('mu', is_real=True)

    V = VectorFunctionSpace('V', domain)

    u, u1, u2 = [element_of(V, name=i) for i in ['u', 'u1', 'u2']]
    v, v1, v2 = [element_of(V, name=i) for i in ['v', 'v1', 'v2']]

    # ...
    int_0 = lambda expr: integral(domain, expr)
    int_1 = lambda expr: integral(B1, expr)

    g = Matrix((x, y))
    l = LinearForm(v, int_0(dot(g, v)))
    print(TerminalExpr(l))
    print('')
    # ...

    # ...
    g = Matrix((x, y))
    l = LinearForm(v, int_0(dot(g, v) + div(v)))
    print(TerminalExpr(l))
    print('')
def test_tensorize_2d_2_mapping():

    DIM = 2
    M = Mapping('M', DIM)
    domain = Domain('Omega', dim=DIM)

    V = VectorFunctionSpace('V', domain)
    u, v = elements_of(V, names='u, v')

    c = Constant('c')

    int_0 = lambda expr: integral(domain, expr)

    a = BilinearForm((u, v), int_0(c * div(v) * div(u) + curl(v) * curl(u)))
    expr = TensorExpr(a, mapping=M)
    print(expr)
Beispiel #10
0
def test_compiler_3d_stokes():

    domain = Domain('Omega', dim=3)

    # ...
    #    by setting the space type, we cannot evaluate grad of Hdiv function, then
    #    ArgumentTypeError will be raised.
    #    In order to avoid this problem, we need first to declare our space as an
    #    undefined type.
    Hdiv = VectorFunctionSpace('V2', domain, kind='Hdiv')
    L2 = ScalarFunctionSpace('V3', domain, kind='L2')

    X = Hdiv * L2

    u, p = element_of(X, name='u, p')
    v, q = element_of(X, name='v, q')

    with pytest.raises(ArgumentTypeError):
        expr = inner(grad(u), grad(v)) - div(v) * p + q * div(u)
    # ...

    # ...
    Hdiv = VectorFunctionSpace('V2', domain)
    L2 = ScalarFunctionSpace('V3', domain)

    X = Hdiv * L2

    u, p = element_of(X, name='u, p')
    v, q = element_of(X, name='v, q')

    expr = inner(grad(u), grad(v)) - div(v) * p + q * div(u)
    atoms = {
        u: DifferentialForm('u', index=2, dim=domain.dim),
        v: DifferentialForm('v', index=2, dim=domain.dim),
        p: DifferentialForm('p', index=3, dim=domain.dim),
        q: DifferentialForm('q', index=3, dim=domain.dim)
    }
    newexpr = ExteriorCalculusExpr(expr, tests=[v, q], atoms=atoms)
    print('===== BEFORE =====')
    print(newexpr)

    newexpr = augmented_expression(newexpr,
                                   tests=[v, q],
                                   atoms=atoms,
                                   weak=False)
    print('===== AFTER  =====')
    print(newexpr)
Beispiel #11
0
def test_compiler_3d_poisson():

    domain = Domain('Omega', dim=3)

    H1 = ScalarFunctionSpace('V0', domain, kind='H1')
    Hcurl = VectorFunctionSpace('V1', domain, kind='Hcurl')
    Hdiv = VectorFunctionSpace('V2', domain, kind='Hdiv')
    L2 = ScalarFunctionSpace('V3', domain, kind='L2')
    V = VectorFunctionSpace('V', domain)

    X = Hdiv * L2

    sigma, u = element_of(X, name='sigma, u')
    tau, v = element_of(X, name='tau,   v')

    expr = dot(sigma, tau) + div(tau) * u + div(sigma) * v
    print(ExteriorCalculusExpr(expr, tests=[tau, v]))
Beispiel #12
0
def test_compiler_3d_2():

    domain = Domain('Omega', dim=3)

    H1    = ScalarFunctionSpace('V0', domain, kind='H1')
    Hcurl = VectorFunctionSpace('V1', domain, kind='Hcurl')
    Hdiv  = VectorFunctionSpace('V2', domain, kind='Hdiv')
    L2    = ScalarFunctionSpace('V3', domain, kind='L2')
    V     = VectorFunctionSpace('V', domain)

    X = H1 * Hcurl * Hdiv * L2

    v = element_of(X, name='v0, v1, v2, v3')
    u = element_of(X, name='u0, u1, u2, u3')

    beta = Field(V, 'beta')

#    # ... Dot operator
#    expr = dot(u1, v1)
#    print(ExteriorCalculusExpr(expr, tests=[v1]))
#
#    expr = dot(u2, v2)
#    print(ExteriorCalculusExpr(expr, tests=[v2]))
#
#    expr = dot(grad(v0), u1)
#    print(ExteriorCalculusExpr(expr, tests=[v0]))
#
#    expr = dot(grad(u0), v1)
#    print(ExteriorCalculusExpr(expr, tests=[v1]))
#
#    expr = dot(curl(u1), v2)
#    print(ExteriorCalculusExpr(expr, tests=[v2]))
#
#    expr = dot(curl(v1), u2)
#    print(ExteriorCalculusExpr(expr, tests=[v1]))
#    # ...

    # ... Mul operator
    expr = u[0] * v[0]
    print(ExteriorCalculusExpr(expr, tests=[v[0]]))

    expr = u[0] * div(v[2])
    print(ExteriorCalculusExpr(expr, tests=[v[2]]))

    expr = v[0] * div(u[2])
    print(ExteriorCalculusExpr(expr, tests=[v[0]]))
Beispiel #13
0
def test_tensorize_3d():

    V = FunctionSpace('V', domain)
    U = FunctionSpace('U', domain)
    W1 = VectorFunctionSpace('W1', domain)
    T1 = VectorFunctionSpace('T1', domain)

    v = TestFunction(V, name='v')
    u = TestFunction(U, name='u')
    w1 = VectorTestFunction(W1, name='w1')
    t1 = VectorTestFunction(T1, name='t1')

    x,y,z = domain.coordinates

    alpha = Constant('alpha')

    # ...
    expr = dot(grad(v), grad(u))
    a = BilinearForm((v,u), expr, name='a')
    print(a)
    print(tensorize(a))
    print('')
    # ...

    # ...
    expr = x*dx(v)*dx(u) + y*dy(v)*dy(u)
    a = BilinearForm((v,u), expr, name='a')
    print(a)
    print(tensorize(a))
    print('')
    # ...

    # ...
    expr = sin(x)*dx(v)*dx(u)
    a = BilinearForm((v,u), expr, name='a')
    print(a)
    print(tensorize(a))
    print('')
    # ...

    # ...
    expr = dot(curl(w1), curl(t1)) + div(w1)*div(t1)
    a = BilinearForm((w1, t1), expr, name='a')
    print(a)
    print(tensorize(a))
    print('')
Beispiel #14
0
def test_linearize_form_2d_3():
    """steady Euler equation."""
    domain = Domain('Omega', dim=2)
    x, y = domain.coordinates

    U = VectorFunctionSpace('U', domain)
    W = FunctionSpace('W', domain)

    v = VectorTestFunction(U, name='v')
    phi = TestFunction(W, name='phi')
    q = TestFunction(W, name='q')

    U_0 = VectorField(U, name='U_0')
    Rho_0 = Field(W, name='Rho_0')
    P_0 = Field(W, name='P_0')

    # ...
    expr = div(Rho_0 * U_0) * phi
    l1 = LinearForm(phi, expr)

    expr = Rho_0 * dot(convect(U_0, grad(U_0)), v) + dot(grad(P_0), v)
    l2 = LinearForm(v, expr)

    expr = dot(U_0, grad(P_0)) * q + P_0 * div(U_0) * q
    l3 = LinearForm(q, expr)
    # ...

    a1 = linearize(l1, [Rho_0, U_0], trials=['d_rho', 'd_u'])
    print(a1)
    print('')

    a2 = linearize(l2, [Rho_0, U_0, P_0], trials=['d_rho', 'd_u', 'd_p'])
    print(a2)
    print('')

    a3 = linearize(l3, [P_0, U_0], trials=['d_p', 'd_u'])
    print(a3)
    print('')

    l = LinearForm((phi, v, q), l1(phi) + l2(v) + l3(q))
    a = linearize(l, [Rho_0, U_0, P_0], trials=['d_rho', 'd_u', 'd_p'])
    print(a)

    export(a, 'steady_euler.png')
Beispiel #15
0
def test_curldiv_2d():

    domain = Square()

    W1 = VectorFunctionSpace('W1', domain)
    T1 = VectorFunctionSpace('T1', domain)

    w1 = VectorTestFunction(W1, name='w1')
    t1 = VectorTestFunction(T1, name='t1')

    mu = Constant('mu')

    # ...
    a = BilinearForm((w1, t1),
                     rot(w1) * rot(t1) + mu * div(w1) * div(t1),
                     name='a')
    print(a)
    print(atomize(a))
    print(evaluate(a))
Beispiel #16
0
def test_logical_expr_3d_4():

    dim = 3
    domain = Domain('Omega', dim=dim)
    M = Mapping('M', dim=3)

    mapped_domain = M(domain)

    V = VectorFunctionSpace('V', domain, kind='hdiv')
    VM = VectorFunctionSpace('VM', mapped_domain, kind='hdiv')

    u, v = elements_of(V, names='u,v')
    um, vm = elements_of(VM, names='u,v')

    J = M.jacobian

    a = div(um) * div(vm)
    e = LogicalExpr(a, mapping=M, dim=dim)

    assert e == J.det()**-2 * div(u) * div(v)
def test_tensorize_2d_2():

    domain = Domain('Omega', dim=2)
    B1 = Boundary(r'\Gamma_1', domain)

    x, y = domain.coordinates

    kappa = Constant('kappa', is_real=True)
    mu = Constant('mu', is_real=True)

    V = VectorFunctionSpace('V', domain)
    u, v = elements_of(V, names='u, v')

    int_0 = lambda expr: integral(domain, expr)
    # ...
    #    a = BilinearForm((u,v), dot(u,v))
    a = BilinearForm((u, v), int_0(curl(u) * curl(v) + div(u) * div(v)))

    expr = TensorExpr(a)
    print(expr)
Beispiel #18
0
def test_bilinear_form_2d_3():

    domain = Domain('Omega', dim=2)

    x, y = domain.coordinates

    V = VectorFunctionSpace('V', domain)
    W = FunctionSpace('W', domain)

    v = VectorTestFunction(V, name='v')
    u = VectorTestFunction(V, name='u')
    p = TestFunction(W, name='p')
    q = TestFunction(W, name='q')

    a = BilinearForm((u, v), inner(grad(v), grad(u)))
    b = BilinearForm((v, p), div(v) * p)
    A = BilinearForm(((u, p), (v, q)), a(v, u) - b(v, p) + b(u, q))

    export(A, 'stokes_2d.png')
Beispiel #19
0
def test_tensorize_2d_stokes():
    domain = Domain('Omega', dim=DIM)

    # ... abstract model
    V = VectorFunctionSpace('V', domain)
    W = FunctionSpace('W', domain)

    v = VectorTestFunction(V, name='v')
    u = VectorTestFunction(V, name='u')
    p = TestFunction(W, name='p')
    q = TestFunction(W, name='q')

    a = BilinearForm((v, u), inner(grad(v), grad(u)), name='a')
    b = BilinearForm((v, p), div(v) * p, name='b')
    A = BilinearForm(((v, q), (u, p)), a(v, u) - b(v, p) + b(u, q), name='A')
    # ...

    print(A)
    print(tensorize(A))
    print('')
Beispiel #20
0
def test_terminal_expr_bilinear_2d_4():

    domain = Domain('Omega', dim=2)

    x, y = domain.coordinates

    V = VectorFunctionSpace('V', domain)
    W = ScalarFunctionSpace('W', domain)

    v = element_of(V, name='v')
    u = element_of(V, name='u')
    p = element_of(W, name='p')
    q = element_of(W, name='q')

    int_0 = lambda expr: integral(domain, expr)

    # stokes
    a = BilinearForm((u, v), int_0(inner(grad(v), grad(u))))
    b = BilinearForm((v, p), int_0(div(v) * p))
    a = BilinearForm(((u, p), (v, q)), a(v, u) - b(v, p) + b(u, q))

    print(TerminalExpr(a))
    print('')
Beispiel #21
0
def test_latex_2d_4():
    DIM = 2

    domain = Domain('Omega', dim=DIM)

    # ... abstract model
    V = VectorFunctionSpace('V', domain)
    W = ScalarFunctionSpace('W', domain)

    v = element_of(V, name='v')
    u = element_of(V, name='u')
    p = element_of(W, name='p')
    q = element_of(W, name='q')

    int_0 = lambda expr: integral(domain, expr)

    a = BilinearForm((v, u), int_0(inner(grad(v), grad(u))))
    b = BilinearForm((v, p), int_0(div(v) * p))
    A = BilinearForm(((v, q), (u, p)), a(v, u) - b(v, p) + b(u, q))
    # ...

    print(latex(A))
    #    print(latex(tensorize(A)))
    print('')
Beispiel #22
0
def test_calculus_2d_5():

    DIM = 2
    domain = Domain('Omega', dim=DIM)

    V = VectorFunctionSpace('V', domain, kind=None)

    u, v = elements_of(V, names='u, v')

    a = Constant('a', is_real=True)

    # ... jump operator
    assert (jump(u + v) == jump(u) + jump(v))
    assert (jump(a * u) == a * jump(u))
    # ...

    # ... avg operator
    assert (avg(u + v) == avg(u) + avg(v))
    assert (avg(a * u) == a * avg(u))
    # ...

    # ... Dn operator
    assert (Dn(u + v) == Dn(u) + Dn(v))
    assert (Dn(a * u) == a * Dn(u))
    # ...

    # ... minus operator
    assert (minus(u + v) == minus(u) + minus(v))
    assert (minus(a * u) == a * minus(u))
    assert (div(minus(u + v)) == div(minus(u)) + div(minus(v)))
    # ...

    # ... plus operator
    assert (plus(u + v) == plus(u) + plus(v))
    assert (plus(a * u) == a * plus(u))
    assert (div(plus(u + v)) == div(plus(u)) + div(plus(v)))
Beispiel #23
0
def test_bilinearity_2d_2():
    domain = Domain('Omega', dim=DIM)

    V1 = FunctionSpace('V1', domain)
    V2 = FunctionSpace('V2', domain)
    U1 = FunctionSpace('U1', domain)
    U2 = FunctionSpace('U2', domain)
    W1 = VectorFunctionSpace('W1', domain)
    W2 = VectorFunctionSpace('W2', domain)
    T1 = VectorFunctionSpace('T1', domain)
    T2 = VectorFunctionSpace('T2', domain)

    v1 = TestFunction(V1, name='v1')
    v2 = TestFunction(V2, name='v2')
    u1 = TestFunction(U1, name='u1')
    u2 = TestFunction(U2, name='u2')
    w1 = VectorTestFunction(W1, name='w1')
    w2 = VectorTestFunction(W2, name='w2')
    t1 = VectorTestFunction(T1, name='t1')
    t2 = VectorTestFunction(T2, name='t2')

    V = ProductSpace(V1, V2)
    U = ProductSpace(U1, U2)

    x, y = V1.coordinates

    alpha = Constant('alpha')

    F = Field('F', space=V1)

    # ...
    a1 = BilinearForm((v1, u1), u1 * v1, check=True)
    a = BilinearForm((v2, u2), a1(v2, u2), check=True)
    # ...

    # ...
    a = BilinearForm((v1, u1), dot(grad(v1), grad(u1)), check=True)
    # ...

    # ...
    a1 = BilinearForm((v1, u1), dot(grad(v1), grad(u1)), check=True)
    a = BilinearForm((v2, u2), a1(v2, u2), check=True)
    # ...

    # ...
    a1 = BilinearForm((v1, u1), u1 * v1)
    a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), check=True)
    a = BilinearForm((v2, u2), a1(v2, u2) + a2(v2, u2), check=True)
    # ...

    # ...
    a1 = BilinearForm((v1, u1), u1 * v1, check=True)
    a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), check=True)
    # ...

    # ...
    a1 = BilinearForm((v1, u1), u1 * v1, check=True)
    a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), check=True)
    a = BilinearForm(((v1, v2), (u1, u2)), a1(v1, u2) + a2(v2, u1), check=True)
    # ...

    # ...
    a = BilinearForm((w1, t1),
                     rot(w1) * rot(t1) + div(w1) * div(t1),
                     check=True)
    # ...

    # ...
    a1 = BilinearForm((v1, u1), u1 * v1, check=True)
    a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), check=True)
    a3 = BilinearForm((w1, t1),
                      rot(w1) * rot(t1) + div(w1) * div(t1),
                      check=True)
    a4 = BilinearForm((w1, u1), div(w1) * u1, check=True)

    a = BilinearForm(((w2, v2), (t2, u2)),
                     a3(w2, t2) + a2(v2, u2) + a4(w2, u2),
                     check=True)
    # ...

    # ...
    a1 = BilinearForm((v1, u1), laplace(u1) * laplace(v1), check=True)
    # ...

    # ...
    a1 = BilinearForm((v1, u1), inner(hessian(u1), hessian(v1)), check=True)
    # ...

    # ... stokes
    V = VectorFunctionSpace('V', domain)
    W = FunctionSpace('W', domain)

    v = VectorTestFunction(V, name='v')
    u = VectorTestFunction(V, name='u')
    p = TestFunction(W, name='p')
    q = TestFunction(W, name='q')

    a = BilinearForm((v, u), inner(grad(v), grad(u)), check=True)
    b = BilinearForm((v, p), div(v) * p, check=True)
    A = BilinearForm(((v, q), (u, p)), a(v, u) - b(v, p) + b(u, q), check=True)
    # ...

    ################################
    #    non bilinear forms
    ################################
    # ...
    with pytest.raises(UnconsistentLinearExpressionError):
        a = BilinearForm((v1, u1), dot(grad(v1), grad(u1)) + v1, check=True)
    # ...

    # ...
    with pytest.raises(UnconsistentLinearExpressionError):
        a = BilinearForm((v1, u1), v1**2 * u1, check=True)
    # ...

    # ...
    with pytest.raises(UnconsistentLinearExpressionError):
        a = BilinearForm((v1, u1), dot(grad(v1), grad(v1)), check=True)
Beispiel #24
0
def test_linearity_2d_2():
    domain = Domain('Omega', dim=DIM)

    V1 = FunctionSpace('V1', domain)
    V2 = FunctionSpace('V2', domain)
    U1 = FunctionSpace('U1', domain)
    U2 = FunctionSpace('U2', domain)
    W1 = VectorFunctionSpace('W1', domain)
    W2 = VectorFunctionSpace('W2', domain)
    T1 = VectorFunctionSpace('T1', domain)
    T2 = VectorFunctionSpace('T2', domain)

    v1 = TestFunction(V1, name='v1')
    v2 = TestFunction(V2, name='v2')
    u1 = TestFunction(U1, name='u1')
    u2 = TestFunction(U2, name='u2')
    w1 = VectorTestFunction(W1, name='w1')
    w2 = VectorTestFunction(W2, name='w2')
    t1 = VectorTestFunction(T1, name='t1')
    t2 = VectorTestFunction(T2, name='t2')

    V = ProductSpace(V1, V2)
    U = ProductSpace(U1, U2)

    x, y = V1.coordinates

    alpha = Constant('alpha')

    F = Field('F', space=V1)

    # ...
    l1 = LinearForm(v1, x * y * v1, check=True)

    l = LinearForm(v2, l1(v2), check=True)
    # ...

    # ...
    l1 = LinearForm(v1, x * y * v1, check=True)
    l2 = LinearForm(v2, cos(x + y) * v2, check=True)

    l = LinearForm((u1, u2), l1(u1) + l2(u2), check=True)
    # ...

    # ...
    l1 = LinearForm(v1, x * y * v1, check=True)
    l2 = LinearForm(v2, cos(x + y) * v2, check=True)

    l = LinearForm((u1, u2), l1(u1) + alpha * l2(u2), check=True)
    # ...

    # ...
    l1 = LinearForm(v1, x * y * v1, check=True)
    l2 = LinearForm(w1, div(w1), check=True)

    l = LinearForm((v2, w2), l1(v2) + l2(w2), check=True)
    # ...

    ################################
    #    non bilinear forms
    ################################
    # ...
    with pytest.raises(UnconsistentLinearExpressionError):
        l = LinearForm(v1, x * y * v1**2, check=True)
    # ...

    # ...
    with pytest.raises(UnconsistentLinearExpressionError):
        l = LinearForm(v1, x * y, check=True)
Beispiel #25
0
def test_calls_2d():
    domain = Domain('Omega', dim=DIM)

    V1 = FunctionSpace('V1', domain)
    V2 = FunctionSpace('V2', domain)
    U1 = FunctionSpace('U1', domain)
    U2 = FunctionSpace('U2', domain)
    W1 = VectorFunctionSpace('W1', domain)
    W2 = VectorFunctionSpace('W2', domain)
    T1 = VectorFunctionSpace('T1', domain)
    T2 = VectorFunctionSpace('T2', domain)

    v1 = TestFunction(V1, name='v1')
    v2 = TestFunction(V2, name='v2')
    u1 = TestFunction(U1, name='u1')
    u2 = TestFunction(U2, name='u2')
    w1 = VectorTestFunction(W1, name='w1')
    w2 = VectorTestFunction(W2, name='w2')
    t1 = VectorTestFunction(T1, name='t1')
    t2 = VectorTestFunction(T2, name='t2')

    V = ProductSpace(V1, V2)
    U = ProductSpace(U1, U2)

    x, y = V1.coordinates

    alpha = Constant('alpha')

    F = Field('F', space=V1)

    # ...
    a1 = BilinearForm((v1, u1), u1 * v1, name='a1')
    print(a1)
    print(atomize(a1))
    print(evaluate(a1))
    print('')

    expr = a1(v2, u2)
    a = BilinearForm((v2, u2), expr, name='a')
    print(a)
    print(atomize(a))
    print(evaluate(a))
    print('')
    # ...

    # ...
    a = BilinearForm((v1, u1), dot(grad(v1), grad(u1)), name='a')

    print(a)
    print(atomize(a))
    print(evaluate(a))
    print('')
    # ...

    # ...
    a1 = BilinearForm((v1, u1), dot(grad(v1), grad(u1)), name='a1')

    expr = a1(v2, u2)
    a = BilinearForm((v2, u2), expr, name='a')
    print(a)
    print(atomize(a))
    print(evaluate(a))
    print('')
    # ...

    # ...
    a1 = BilinearForm((v1, u1), u1 * v1, name='a1')
    a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), name='a2')

    expr = a1(v2, u2) + a2(v2, u2)
    a = BilinearForm((v2, u2), expr, name='a')
    print(a)
    print(atomize(a))
    print(evaluate(a))
    print('')
    # ...

    # ...
    a1 = BilinearForm((v1, u1), u1 * v1, name='a1')
    a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), name='a2')

    expr = a1(v1, u2)
    print('> before = ', expr)
    expr = expr.subs(u2, u1)
    print('> after  = ', expr)
    print('')

    expr = a1(v1, u2) + a1(v2, u2)
    print('> before = ', expr)
    expr = expr.subs(u2, u1)
    print('> after  = ', expr)
    print('')
    # ...

    # ...
    a1 = BilinearForm((v1, u1), u1 * v1, name='a1')
    a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), name='a2')

    expr = a1(v1, u2) + a2(v2, u1)
    a = BilinearForm(((v1, v2), (u1, u2)), expr, name='a')
    print(a)
    print(atomize(a))
    print(evaluate(a))
    print('')
    # ...

    # ...
    a = BilinearForm((w1, t1), rot(w1) * rot(t1) + div(w1) * div(t1), name='a')
    print(a)
    print(atomize(a))
    print(evaluate(a))
    # ...

    # ...
    a1 = BilinearForm((v1, u1), u1 * v1, name='a1')
    a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), name='a2')
    a3 = BilinearForm((w1, t1),
                      rot(w1) * rot(t1) + div(w1) * div(t1),
                      name='a3')
    a4 = BilinearForm((w1, u1), div(w1) * u1, name='a4')

    expr = a3(w2, t2) + a2(v2, u2) + a4(w2, u2)
    a = BilinearForm(((w2, v2), (t2, u2)), expr, name='a')
    print(a)
    print(atomize(a))
    print(evaluate(a))
    # ...

    # ...
    a1 = BilinearForm((v1, u1), laplace(u1) * laplace(v1), name='a1')
    print(a1)
    print(atomize(a1))
    print(evaluate(a1))
    print('')
    # ...

    # ...
    a1 = BilinearForm((v1, u1), inner(hessian(u1), hessian(v1)), name='a1')
    print('================================')
    print(a1)
    print(atomize(a1))
    print(evaluate(a1))
    print('')
    # ...

    # ...
    l1 = LinearForm(v1, x * y * v1, name='11')

    expr = l1(v2)
    l = LinearForm(v2, expr, name='1')
    print(l)
    print(atomize(l))
    print(evaluate(l))
    # ...

    # ...
    l1 = LinearForm(v1, x * y * v1, name='l1')
    l2 = LinearForm(v2, cos(x + y) * v2, name='l2')

    expr = l1(u1) + l2(u2)
    l = LinearForm((u1, u2), expr, name='1')
    print(l)
    print(atomize(l))
    print(evaluate(l))
    # ...

    # ...
    l1 = LinearForm(v1, x * y * v1, name='l1')
    l2 = LinearForm(v2, cos(x + y) * v2, name='l2')

    expr = l1(u1) + alpha * l2(u2)
    l = LinearForm((u1, u2), expr, name='1')
    print(l)
    print(atomize(l))
    print(evaluate(l))
    # ...

    # ...
    l1 = LinearForm(v1, x * y * v1, name='l1')
    l2 = LinearForm(w1, div(w1), name='l2')

    expr = l1(v2) + l2(w2)
    l = LinearForm((v2, w2), expr, name='1')
    print(l)
    print(atomize(l))
    print(evaluate(l))
    # ...

    # ...
    I1 = Integral(x * y, domain, name='I1')

    print(I1)
    print(atomize(I1))
    print(evaluate(I1))
    # ...

    # ...
    expr = F - cos(2 * pi * x) * cos(3 * pi * y)
    expr = dot(grad(expr), grad(expr))
    I2 = Integral(expr, domain, name='I2')

    print(I2)
    print(atomize(I2))
    print(evaluate(I2))
    # ...

    # ...
    expr = F - cos(2 * pi * x) * cos(3 * pi * y)
    expr = dot(grad(expr), grad(expr))
    I2 = Integral(expr, domain, name='I2')

    print(I2)
    print(atomize(I2))
    print(evaluate(I2))
    # ...

    # ... stokes
    V = VectorFunctionSpace('V', domain)
    W = FunctionSpace('W', domain)

    v = VectorTestFunction(V, name='v')
    u = VectorTestFunction(V, name='u')
    p = TestFunction(W, name='p')
    q = TestFunction(W, name='q')

    a = BilinearForm((v, u), inner(grad(v), grad(u)), name='a')
    b = BilinearForm((v, p), div(v) * p, name='b')
    A = BilinearForm(((v, q), (u, p)), a(v, u) - b(v, p) + b(u, q), name='A')

    print(A)
    print(atomize(A))
    print(evaluate(A))
Beispiel #26
0
def test_compiler_3d_1():

    domain = Domain('Omega', dim=3)

    H1 = ScalarFunctionSpace('V0', domain, kind='H1')
    Hcurl = VectorFunctionSpace('V1', domain, kind='Hcurl')
    Hdiv = VectorFunctionSpace('V2', domain, kind='Hdiv')
    L2 = ScalarFunctionSpace('V3', domain, kind='L2')
    V = VectorFunctionSpace('V', domain)

    X = H1 * Hcurl * Hdiv * L2

    v0, v1, v2, v3 = element_of(X, name='v0, v1, v2, v3')

    beta = element_of(V, 'beta')

    #    # ...
    #    expr = grad(v0)
    #    expected = d(DifferentialForm('v0', index=0, dim=domain.dim))
    #
    #    assert(ExteriorCalculusExpr(expr) == expected)
    #    # ...
    #
    #    # ...
    #    expr = curl(v1)
    #    expected = d(DifferentialForm('v1', index=1, dim=domain.dim))
    #
    #    assert(ExteriorCalculusExpr(expr) == expected)
    #    # ...
    #
    #    # ...
    #    expr = div(v2)
    #    expected = d(DifferentialForm('v2', index=2, dim=domain.dim))
    #
    #    assert(ExteriorCalculusExpr(expr) == expected)
    #    # ...
    #
    #    # ...
    #    expr = grad(v0)
    #    expected = - delta(DifferentialForm('v0', index=3, dim=domain.dim))
    #
    #    assert(ExteriorCalculusExpr(expr, tests=[v0]) == expected)
    #    # ...
    #
    #    # ...
    #    expr = curl(v1)
    #    expected = delta(DifferentialForm('v1', index=2, dim=domain.dim))
    #
    #    assert(ExteriorCalculusExpr(expr, tests=[v1]) == expected)
    #    # ...
    #
    #    # ...
    #    expr = div(v2)
    #    expected = -delta(DifferentialForm('v2', index=1, dim=domain.dim))
    #
    #    assert(ExteriorCalculusExpr(expr, tests=[v2]) == expected)
    #    # ...
    #
    #    # ...
    #    expr = dot(beta, v1)
    #    expected = ip(beta, DifferentialForm('v1', index=1, dim=domain.dim))
    #
    #    assert(ExteriorCalculusExpr(expr) == expected)
    #    # ...
    #
    #    # ...
    #    expr = cross(beta, v2)
    #    expected = ip(beta, DifferentialForm('v2', index=2, dim=domain.dim))
    #
    #    assert(ExteriorCalculusExpr(expr) == expected)
    #    # ...
    #
    #    # ...
    #    expr = beta*v3
    #    expected = ip(beta, DifferentialForm('v3', index=3, dim=domain.dim))
    #
    #    assert(ExteriorCalculusExpr(expr) == expected)
    #    # ...
    #
    #    # ...
    #    expr = dot(beta, v1)
    #    expected = jp(beta, DifferentialForm('v1', index=3, dim=domain.dim))
    #
    #    assert(ExteriorCalculusExpr(expr, tests=[v1]) == expected)
    #    # ...
    #
    #    # ...
    #    expr = cross(beta, v2)
    #    expected = -jp(beta, DifferentialForm('v2', index=2, dim=domain.dim))
    #
    #    assert(ExteriorCalculusExpr(expr, tests=[v2]) == expected)
    #    # ...
    #
    #    # ...
    #    expr = beta*v3
    #    expected = jp(beta, DifferentialForm('v3', index=1, dim=domain.dim))
    #
    #    assert(ExteriorCalculusExpr(expr, tests=[v3]) == expected)
    #    # ...

    # ..................................................
    #     LIE DERIVATIVES
    # ..................................................
    # ...
    expr = dot(beta, grad(v0))
    expected = ld(beta, DifferentialForm('v0', index=0, dim=domain.dim))

    assert (ExteriorCalculusExpr(expr) == expected)
    # ...

    # ...
    expr = grad(dot(beta, v1)) + cross(curl(v1), beta)
    expected = ld(beta, DifferentialForm('v1', index=1, dim=domain.dim))

    assert (ExteriorCalculusExpr(expr) == expected)
    # ...

    # ...
    expr = curl(cross(v2, beta)) + div(v2) * beta
    expected = ld(beta, DifferentialForm('v2', index=2, dim=domain.dim))

    #assert(ExteriorCalculusExpr(expr) == expected)
    # ...

    # ...
    expr = div(beta * v3)
    expected = ld(beta, DifferentialForm('v3', index=3, dim=domain.dim))

    assert (ExteriorCalculusExpr(expr) == expected)
Beispiel #27
0
def test_calculus_3d_3():
    domain = Domain('Omega', dim=3)

    H1 = ScalarFunctionSpace('V0', domain, kind='H1')
    Hcurl = VectorFunctionSpace('V1', domain, kind='Hcurl')
    Hdiv = VectorFunctionSpace('V2', domain, kind='Hdiv')
    L2 = ScalarFunctionSpace('V3', domain, kind='L2')
    V = ScalarFunctionSpace('V', domain, kind=None)
    W = VectorFunctionSpace('W', domain, kind=None)

    X = ProductSpace(H1, Hcurl, Hdiv, L2)
    v0, v1, v2, v3 = element_of(X, ['v0', 'v1', 'v2', 'v3'])

    v = element_of(V, 'v')
    w = element_of(W, 'w')

    # ... consistency of grad operator
    # we can apply grad on an undefined space type or H1
    expr = grad(v0)
    expr = grad(v)
    expr = grad(w)

    # wa cannot apply grad to a function in Hcurl
    with pytest.raises(ArgumentTypeError):
        expr = grad(v1)

    # wa cannot apply grad to a function in Hdiv
    with pytest.raises(ArgumentTypeError):
        expr = grad(v2)

    # wa cannot apply grad to a function in L2
    with pytest.raises(ArgumentTypeError):
        expr = grad(v3)
    # ...

    # ... consistency of curl operator
    # we can apply curl on an undefined space type, H1 or Hcurl
    expr = curl(v0)
    expr = curl(v1)
    expr = curl(v)
    expr = curl(w)

    # wa cannot apply curl to a function in Hdiv
    with pytest.raises(ArgumentTypeError):
        expr = curl(v2)

    # wa cannot apply curl to a function in L2
    with pytest.raises(ArgumentTypeError):
        expr = curl(v3)
    # ...

    # ... consistency of div operator
    # we can apply div on an undefined space type, H1 or Hdiv
    expr = div(v0)
    expr = div(v2)
    expr = div(v)
    expr = div(w)

    # wa cannot apply div to a function in Hcurl
    with pytest.raises(ArgumentTypeError):
        expr = div(v1)

    # wa cannot apply div to a function in L2
    with pytest.raises(ArgumentTypeError):
        expr = div(v3)