Beispiel #1
0
def test_logical_expr_2d_1():
    rdim = 2

    M = Mapping('M', rdim)
    domain = M(Domain('Omega', dim=rdim))

    alpha = Constant('alpha')

    V = ScalarFunctionSpace('V', domain, kind='h1')
    W = VectorFunctionSpace('V', domain, kind='h1')

    u, v = [element_of(V, name=i) for i in ['u', 'v']]
    w = element_of(W, name='w')

    det_M = Jacobian(M).det()
    #print('det = ', det_M)
    det = Symbol('det')

    # ...
    expr = 2 * u + alpha * v
    expr = LogicalExpr(expr, mapping=M, dim=rdim)
    #print(expr)
    #print('')
    # ...

    # ...
    expr = dx(u)
    expr = LogicalExpr(expr, mapping=M, dim=rdim)
    #print(expr.subs(det_M, det))
    #print('')
    # ...

    # ...
    expr = dy(u)
    expr = LogicalExpr(expr, mapping=M, dim=rdim)
    #print(expr.subs(det_M, det))
    #print('')
    # ...

    # ...
    expr = dx(det_M)
    expr = LogicalExpr(expr, mapping=M, dim=rdim)
    expr = expr.subs(det_M, det)
    expr = expand(expr)
    #print(expr)
    #print('')
    # ...

    # ...
    expr = dx(dx(u))
    expr = LogicalExpr(expr, mapping=M, dim=rdim)
    #print(expr.subs(det_M, det))
    #print('')
    # ...

    # ...
    expr = dx(w[0])
    expr = LogicalExpr(expr, mapping=M, dim=rdim)
Beispiel #2
0
    def _visit_PhysicalValueNode(self, expr, **kwargs):
        mapping = self.mapping
        expr = LogicalExpr(mapping, expr.expr)
        expr = SymbolicExpr(expr)

        inv_jac = SymbolicInverseDeterminant(mapping)
        jac = SymbolicExpr(mapping.det_jacobian)
        expr = expr.subs(1 / jac, inv_jac)

        return expr
def test_logical_expr_3d_1():
    rdim = 3

    M = Mapping('M', rdim)
    domain = Domain('Omega', dim=rdim)

    alpha = Constant('alpha')

    V = ScalarFunctionSpace('V', domain)

    u, v = [element_of(V, name=i) for i in ['u', 'v']]

    det_M = DetJacobian(M)
    #print('det = ', det_M)
    det = Symbol('det')

    # ...
    expr = 2 * u + alpha * v
    expr = LogicalExpr(M, expr)
    #print(expr)
    #print('')
    # ...

    # ...
    expr = dx(u)
    expr = LogicalExpr(M, expr)
    #print(expr.subs(det_M, det))
    #print('')
    # ...

    # ...
    expr = dy(u)
    expr = LogicalExpr(M, expr)
    #print(expr.subs(det_M, det))
    #print('')
    # ...

    # ...
    expr = dx(det_M)
    expr = LogicalExpr(M, expr)
    expr = expr.subs(det_M, det)
    expr = expand(expr)
    #print(expr)
    #print('')
    # ...

    # ...
    expr = dx(dx(u))
    expr = LogicalExpr(M, expr)
Beispiel #4
0
def test_logical_expr_3d_1():
    dim = 3

    M = Mapping('M', dim=dim)
    domain = M(Domain('Omega', dim=dim))

    alpha = Constant('alpha')

    V = ScalarFunctionSpace('V', domain, kind='h1')

    u, v = [element_of(V, name=i) for i in ['u', 'v']]

    det_M = Jacobian(M).det()
    #print('det = ', det_M)
    det = Symbol('det')

    # ...
    expr = 2 * u + alpha * v
    expr = LogicalExpr(expr, domain)
    #print(expr)
    #print('')
    # ...

    # ...
    expr = dx(u)
    expr = LogicalExpr(expr, domain)
    #print(expr.subs(det_M, det))
    #print('')
    # ...

    # ...
    expr = dy(u)
    expr = LogicalExpr(expr, domain)
    #print(expr.subs(det_M, det))
    #print('')
    # ...

    # ...
    expr = dx(det_M)
    expr = LogicalExpr(expr, domain)
    expr = expr.subs(det_M, det)
    #print(expr)
    #print('')
    # ...

    # ...
    expr = dx(dx(u))
    expr = LogicalExpr(expr, domain)
Beispiel #5
0
def test_symbolic_expr_1d_1():
    rdim = 1

    M = Mapping('M', rdim)
    domain = M(Domain('Omega', dim=rdim))

    alpha = Constant('alpha')

    V = ScalarFunctionSpace('V', domain, kind='h1')

    u = element_of(V, name='u')

    det_M = Jacobian(M).det()
    det_M = SymbolicExpr(det_M)
    #print('>>> ', det_M)
    det = Symbol('det')

    # ...
    expr = u
    expr = LogicalExpr(expr, mapping=M, dim=rdim)
    expr = SymbolicExpr(expr)
    #print(expr)
    # ...

    # ...
    expr = dx1(u)
    expr = LogicalExpr(expr, mapping=M, dim=rdim)
    expr = SymbolicExpr(expr)
    #print(expr)
    # ...

    # ...
    expr = dx1(M[0])
    expr = LogicalExpr(expr, mapping=M, dim=rdim)
    expr = SymbolicExpr(expr)
    #print(expr)
    # ...

    # ...
    expr = dx(u)
    expr = LogicalExpr(expr, mapping=M, dim=rdim)
    expr = SymbolicExpr(expr)
    expr = expr.subs(det_M, det)
    #print(expr)
    # ...

    # ...
    expr = dx(Jacobian(M).det())
    expr = LogicalExpr(expr, mapping=M, dim=rdim)
    expr = SymbolicExpr(expr)
    expr = expr.subs(det_M, det)
    #print(expand(expr))
    # ...

    # ...
    expr = dx(dx(u))
    expr = LogicalExpr(expr, mapping=M, dim=rdim)
    expr = SymbolicExpr(expr)
    expr = expr.subs(det_M, det)
    #print(expand(expr))
    # ...

    # ...
    expr = dx(dx(dx(u)))
    expr = LogicalExpr(expr, mapping=M, dim=rdim)
    expr = SymbolicExpr(expr)
    expr = expr.subs(det_M, det)
Beispiel #6
0
def test_symbolic_expr_3d_1():
    dim = 3
    M = Mapping('M', dim=dim)
    domain = M(Domain('Omega', dim=dim))

    V = ScalarFunctionSpace('V', domain, kind='h1')
    u = element_of(V, 'u')

    det_M = Jacobian(M).det()
    det_M = SymbolicExpr(det_M)
    #print('>>> ', det_M)
    det = Symbol('det')

    # ...
    expr = u
    expr = LogicalExpr(expr, domain)
    expr = SymbolicExpr(expr)
    #print(expr)
    # ...

    # ...
    expr = dx1(u)
    expr = LogicalExpr(expr, domain)
    expr = SymbolicExpr(expr)
    #print(expr)
    # ...

    # ...
    expr = dx1(dx2(u))
    expr = LogicalExpr(expr, domain)
    expr = SymbolicExpr(expr)
    #print(expr)
    # ...

    # ...
    expr = dx1(M[0])
    expr = LogicalExpr(expr, domain)
    expr = SymbolicExpr(expr)
    #print(expr)
    # ...

    # ...
    expr = dx(u)
    expr = LogicalExpr(expr, domain)
    expr = SymbolicExpr(expr)
    expr = expr.subs(det_M, det)
    #print(expr)
    # ...

    # ...
    expr = dx(Jacobian(M).det())
    expr = LogicalExpr(expr, domain)
    expr = SymbolicExpr(expr)
    expr = expr.subs(det_M, det)
    #print(expand(expr))
    # ...

    # ...
    expr = dx(dx(u))
    expr = LogicalExpr(expr, domain)
    expr = SymbolicExpr(expr)
    expr = expr.subs(det_M, det)
    #print(expand(expr))
    # ...

    # ...
    expr = dx(dx(dx(u)))
    expr = LogicalExpr(expr, domain)
    expr = SymbolicExpr(expr)
    expr = expr.subs(det_M, det)
def test_symbolic_expr_3d_1():
    rdim = 3

    M = Mapping('M', rdim)
    domain = Domain('Omega', dim=rdim)

    alpha = Constant('alpha')

    V = ScalarFunctionSpace('V', domain)
    u = element_of(V, 'u')

    det_M = DetJacobian(M)
    det_M = SymbolicExpr(det_M)
    #print('>>> ', det_M)
    det = Symbol('det')

    # ...
    expr = u
    expr = LogicalExpr(M, expr)
    expr = SymbolicExpr(expr)
    #print(expr)
    # ...

    # ...
    expr = dx1(u)
    expr = LogicalExpr(M, expr)
    expr = SymbolicExpr(expr)
    #print(expr)
    # ...

    # ...
    expr = dx1(dx2(u))
    expr = LogicalExpr(M, expr)
    expr = SymbolicExpr(expr)
    #print(expr)
    # ...

    # ...
    expr = dx1(M[0])
    expr = LogicalExpr(M, expr)
    expr = SymbolicExpr(expr)
    #print(expr)
    # ...

    # ...
    expr = dx(u)
    expr = LogicalExpr(M, expr)
    expr = SymbolicExpr(expr)
    expr = expr.subs(det_M, det)
    #print(expr)
    # ...

    # ...
    expr = dx(DetJacobian(M))
    expr = LogicalExpr(M, expr)
    expr = SymbolicExpr(expr)
    expr = expr.subs(det_M, det)
    #print(expand(expr))
    # ...

    # ...
    expr = dx(dx(u))
    expr = LogicalExpr(M, expr)
    expr = SymbolicExpr(expr)
    expr = expr.subs(det_M, det)
    #print(expand(expr))
    # ...

    # ...
    expr = dx(dx(dx(u)))
    expr = LogicalExpr(M, expr)
    expr = SymbolicExpr(expr)
    expr = expr.subs(det_M, det)