Beispiel #1
0
def test_lookup_table():
    from random import uniform, randrange
    from sympy import Add
    from sympy.integrals.meijerint import z as z_dummy
    table = {}
    _create_lookup_table(table)
    for _, l in sorted(table.items()):
        for formula, terms, cond, hint in sorted(l, key=default_sort_key):
            subs = {}
            for a in list(formula.free_symbols) + [z_dummy]:
                if hasattr(a, 'properties') and a.properties:
                    # these Wilds match positive integers
                    subs[a] = randrange(1, 10)
                else:
                    subs[a] = uniform(1.5, 2.0)
            if not isinstance(terms, list):
                terms = terms(subs)

            # First test that hyperexpand can do this.
            expanded = [hyperexpand(g) for (_, g) in terms]
            assert all(x.is_Piecewise or not x.has(meijerg) for x in expanded)

            # Now test that the meijer g-function is indeed as advertised.
            expanded = Add(*[f * x for (f, x) in terms])
            a, b = formula.n(subs=subs), expanded.n(subs=subs)
            r = min(abs(a), abs(b))
            if r < 1:
                assert abs(a - b).n() <= 1e-10
            else:
                assert (abs(a - b) / r).n() <= 1e-10
Beispiel #2
0
def test_lookup_table():
    from random import uniform, randrange
    from sympy import Add
    from sympy.integrals.meijerint import z as z_dummy

    table = {}
    _create_lookup_table(table)
    for _, l in sorted(table.items()):
        for formula, terms, cond, hint in sorted(l, key=default_sort_key):
            subs = {}
            for a in list(formula.free_symbols) + [z_dummy]:
                if hasattr(a, "properties") and a.properties:
                    # these Wilds match positive integers
                    subs[a] = randrange(1, 10)
                else:
                    subs[a] = uniform(1.5, 2.0)
            if not isinstance(terms, list):
                terms = terms(subs)

            # First test that hyperexpand can do this.
            expanded = [hyperexpand(g) for (_, g) in terms]
            assert all(x.is_Piecewise or not x.has(meijerg) for x in expanded)

            # Now test that the meijer g-function is indeed as advertised.
            expanded = Add(*[f * x for (f, x) in terms])
            a, b = formula.n(subs=subs), expanded.n(subs=subs)
            r = min(abs(a), abs(b))
            if r < 1:
                assert abs(a - b).n() <= 1e-10
            else:
                assert (abs(a - b) / r).n() <= 1e-10
Beispiel #3
0
def test_has_basics():
    f = Function("f")
    g = Function("g")
    p = Wild("p")

    assert sin(x).has(x)
    assert sin(x).has(sin)
    assert not sin(x).has(y)
    assert not sin(x).has(cos)
    assert f(x).has(x)
    assert f(x).has(f)
    assert not f(x).has(y)
    assert not f(x).has(g)

    assert f(x).diff(x).has(x)
    assert f(x).diff(x).has(f)
    assert f(x).diff(x).has(Derivative)
    assert not f(x).diff(x).has(y)
    assert not f(x).diff(x).has(g)
    assert not f(x).diff(x).has(sin)

    assert (x ** 2).has(Symbol)
    assert not (x ** 2).has(Wild)
    assert (2 * p).has(Wild)

    assert not x.has()
Beispiel #4
0
def test_has_basics():
    f = Function('f')
    g = Function('g')
    p = Wild('p')

    assert sin(x).has(x)
    assert sin(x).has(sin)
    assert not sin(x).has(y)
    assert not sin(x).has(cos)
    assert f(x).has(x)
    assert f(x).has(f)
    assert not f(x).has(y)
    assert not f(x).has(g)

    assert f(x).diff(x).has(x)
    assert f(x).diff(x).has(f)
    assert f(x).diff(x).has(Derivative)
    assert not f(x).diff(x).has(y)
    assert not f(x).diff(x).has(g)
    assert not f(x).diff(x).has(sin)

    assert (x**2).has(Symbol)
    assert not (x**2).has(Wild)
    assert (2 * p).has(Wild)

    assert not x.has()