def test_arrayexpr_derivatives1():

    res = array_derive(X, X)
    assert res == CodegenArrayPermuteDims(CodegenArrayTensorProduct(I, I),
                                          [0, 2, 1, 3])

    cg = CodegenArrayTensorProduct(A, X, B)
    res = array_derive(cg, X)
    assert res == CodegenArrayPermuteDims(
        CodegenArrayTensorProduct(I, A, I, B), [0, 4, 2, 3, 1, 5, 6, 7])

    cg = CodegenArrayContraction(X, (0, 1))
    res = array_derive(cg, X)
    assert res == CodegenArrayContraction(CodegenArrayTensorProduct(I, I),
                                          (1, 3))

    cg = CodegenArrayDiagonal(X, (0, 1))
    res = array_derive(cg, X)
    assert res == CodegenArrayDiagonal(CodegenArrayTensorProduct(I, I), (1, 3))

    cg = ElementwiseApplyFunction(sin, X)
    res = array_derive(cg, X)
    assert res.dummy_eq(
        CodegenArrayDiagonal(
            CodegenArrayTensorProduct(ElementwiseApplyFunction(cos, X), I, I),
            (0, 3), (1, 5)))
Beispiel #2
0
def test_array_expr_zero_array():
    za1 = ZeroArray(k, l, m, n)
    zm1 = ZeroMatrix(m, n)

    za2 = ZeroArray(k, m, m, n)
    zm2 = ZeroMatrix(m, m)
    zm3 = ZeroMatrix(k, k)

    assert CodegenArrayTensorProduct(M, N, za1) == ZeroArray(k, k, k, k, k, l, m, n)
    assert CodegenArrayTensorProduct(M, N, zm1) == ZeroArray(k, k, k, k, m, n)

    assert CodegenArrayContraction(za1, (3,)) == ZeroArray(k, l, m)
    assert CodegenArrayContraction(zm1, (1,)) == ZeroArray(m)
    assert CodegenArrayContraction(za2, (1, 2)) == ZeroArray(k, n)
    assert CodegenArrayContraction(zm2, (0, 1)) == 0

    assert CodegenArrayDiagonal(za2, (1, 2)) == ZeroArray(k, n, m)
    assert CodegenArrayDiagonal(zm2, (0, 1)) == ZeroArray(m)

    assert CodegenArrayPermuteDims(za1, [2, 1, 3, 0]) == ZeroArray(m, l, n, k)
    assert CodegenArrayPermuteDims(zm1, [1, 0]) == ZeroArray(n, m)

    assert CodegenArrayElementwiseAdd(za1) == za1
    assert CodegenArrayElementwiseAdd(zm1) == ZeroArray(m, n)
    tp1 = CodegenArrayTensorProduct(MatrixSymbol("A", k, l), MatrixSymbol("B", m, n))
    assert CodegenArrayElementwiseAdd(tp1, za1) == tp1
    tp2 = CodegenArrayTensorProduct(MatrixSymbol("C", k, l), MatrixSymbol("D", m, n))
    assert CodegenArrayElementwiseAdd(tp1, za1, tp2) == CodegenArrayElementwiseAdd(tp1, tp2)
    assert CodegenArrayElementwiseAdd(M, zm3) == M
    assert CodegenArrayElementwiseAdd(M, N, zm3) == CodegenArrayElementwiseAdd(M, N)
Beispiel #3
0
def test_contraction_permutation_mix():

    Me = M.subs(k, 3).as_explicit()
    Ne = N.subs(k, 3).as_explicit()

    cg1 = CodegenArrayContraction(
        CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N),
                                Permutation([0, 2, 1, 3])), (2, 3))
    cg2 = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 3))
    assert cg1 == cg2
    assert recognize_matrix_expression(cg2) == M * N.T
    cge1 = tensorcontraction(
        permutedims(tensorproduct(Me, Ne), Permutation([0, 2, 1, 3])), (2, 3))
    cge2 = tensorcontraction(tensorproduct(Me, Ne), (1, 3))
    assert cge1 == cge2

    cg1 = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N),
                                  Permutation([0, 1, 3, 2]))
    cg2 = CodegenArrayTensorProduct(
        M, CodegenArrayPermuteDims(N, Permutation([1, 0])))
    assert cg1 == cg2
    assert recognize_matrix_expression(cg1) == CodegenArrayTensorProduct(
        M, N.T)
    assert recognize_matrix_expression(cg2) == CodegenArrayTensorProduct(
        M, N.T)

    cg1 = CodegenArrayContraction(
        CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N, P, Q),
                                Permutation([0, 2, 3, 1, 4, 5, 7, 6])), (1, 2),
        (3, 5))
    cg2 = CodegenArrayContraction(
        CodegenArrayTensorProduct(
            M, N, P, CodegenArrayPermuteDims(Q, Permutation([1, 0]))), (1, 5),
        (2, 3))
    assert cg1 == cg2
    assert recognize_matrix_expression(cg1) == CodegenArrayTensorProduct(
        M * P.T * Trace(N), Q.T)
    assert recognize_matrix_expression(cg2) == CodegenArrayTensorProduct(
        M * P.T * Trace(N), Q.T)

    cg1 = CodegenArrayContraction(
        CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N, P, Q),
                                Permutation([1, 0, 4, 6, 2, 7, 5, 3])), (0, 1),
        (2, 6), (3, 7))
    cg2 = CodegenArrayPermuteDims(
        CodegenArrayContraction(CodegenArrayTensorProduct(M, P, Q, N), (0, 1),
                                (2, 3), (4, 7)), [1, 0])
    assert cg1 == cg2

    cg1 = CodegenArrayContraction(
        CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N, P, Q),
                                Permutation([1, 0, 4, 6, 7, 2, 5, 3])), (0, 1),
        (2, 6), (3, 7))
    cg2 = CodegenArrayPermuteDims(
        CodegenArrayContraction(
            CodegenArrayTensorProduct(CodegenArrayPermuteDims(M, [1, 0]), N, P,
                                      Q), (0, 1), (3, 6), (4, 5)),
        Permutation([1, 0]))
    assert cg1 == cg2
Beispiel #4
0
def test_remove_trivial_dims():

    # Tensor Product:
    assert _remove_trivial_dims(CodegenArrayTensorProduct(a, b)) == (a * b.T,
                                                                     [1, 3])
    assert _remove_trivial_dims(CodegenArrayTensorProduct(a.T, b)) == (a * b.T,
                                                                       [0, 3])
    assert _remove_trivial_dims(CodegenArrayTensorProduct(a, b.T)) == (a * b.T,
                                                                       [1, 2])
    assert _remove_trivial_dims(CodegenArrayTensorProduct(a.T,
                                                          b.T)) == (a * b.T,
                                                                    [0, 2])

    assert _remove_trivial_dims(CodegenArrayTensorProduct(
        I, a.T, b.T)) == (a * b.T, [0, 1, 2, 4])
    assert _remove_trivial_dims(CodegenArrayTensorProduct(
        a.T, I, b.T)) == (a * b.T, [0, 2, 3, 4])

    assert _remove_trivial_dims(CodegenArrayTensorProduct(a, I)) == (a, [2, 3])
    assert _remove_trivial_dims(CodegenArrayTensorProduct(I, a)) == (a, [0, 1])

    assert _remove_trivial_dims(CodegenArrayTensorProduct(
        a.T, b.T, c, d)) == (CodegenArrayTensorProduct(a * b.T,
                                                       c * d.T), [0, 2, 5, 7])
    assert _remove_trivial_dims(CodegenArrayTensorProduct(
        a.T, I, b.T, c, d,
        I)) == (CodegenArrayTensorProduct(a * b.T, c * d.T,
                                          I), [0, 2, 3, 4, 7, 9])

    # Addition:

    cg = CodegenArrayElementwiseAdd(CodegenArrayTensorProduct(a, b),
                                    CodegenArrayTensorProduct(c, d))
    assert _remove_trivial_dims(cg) == (a * b.T + c * d.T, [1, 3])

    # Permute Dims:

    cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(a, b),
                                 Permutation(3)(1, 2))
    assert _remove_trivial_dims(cg) == (a * b.T, [2, 3])

    cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(a, I, b),
                                 Permutation(5)(1, 2, 3, 4))
    assert _remove_trivial_dims(cg) == (a * b.T, [1, 2, 4, 5])

    cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(I, b, a),
                                 Permutation(5)(1, 2, 4, 5, 3))
    assert _remove_trivial_dims(cg) == (b * a.T, [0, 3, 4, 5])

    # Diagonal:

    cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, a), (1, 2))
    assert _remove_trivial_dims(cg) == (cg, [])

    # Contraction:

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, a), (1, 2))
    assert _remove_trivial_dims(cg) == (cg, [])
def test_arrayexpr_derivatives1():

    res = array_derive(X, X)
    assert res == CodegenArrayPermuteDims(CodegenArrayTensorProduct(I, I),
                                          [0, 2, 1, 3])

    cg = CodegenArrayTensorProduct(A, X, B)
    res = array_derive(cg, X)
    assert res == CodegenArrayPermuteDims(
        CodegenArrayTensorProduct(I, A, I, B), [0, 4, 2, 3, 1, 5, 6, 7])
def test_codegen_array_parse():
    expr = M[i, j]
    assert _codegen_array_parse(expr) == (M, (i, j))
    expr = M[i, j] * N[k, l]
    assert _codegen_array_parse(expr) == (CodegenArrayTensorProduct(M, N),
                                          (i, j, k, l))
    expr = M[i, j] * N[j, k]
    assert _codegen_array_parse(expr) == (CodegenArrayDiagonal(
        CodegenArrayTensorProduct(M, N), (1, 2)), (i, k, j))
    expr = Sum(M[i, j] * N[j, k], (j, 0, k - 1))
    assert _codegen_array_parse(expr) == (CodegenArrayContraction(
        CodegenArrayTensorProduct(M, N), (1, 2)), (i, k))
    expr = M[i, j] + N[i, j]
    assert _codegen_array_parse(expr) == (CodegenArrayElementwiseAdd(M, N),
                                          (i, j))
    expr = M[i, j] + N[j, i]
    assert _codegen_array_parse(expr) == (CodegenArrayElementwiseAdd(
        M, CodegenArrayPermuteDims(N, Permutation([1, 0]))), (i, j))
    expr = M[i, j] + M[j, i]
    assert _codegen_array_parse(expr) == (CodegenArrayElementwiseAdd(
        M, CodegenArrayPermuteDims(M, Permutation([1, 0]))), (i, j))
    expr = (M * N * P)[i, j]
    assert _codegen_array_parse(expr) == (CodegenArrayContraction(
        CodegenArrayTensorProduct(M, N, P), (1, 2), (3, 4)), (i, j))
    expr = expr.function  # Disregard summation in previous expression
    ret1, ret2 = _codegen_array_parse(expr)
    assert ret1 == CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P),
                                        (1, 2), (3, 4))
    assert str(ret2) == "(i, j, _i_1, _i_2)"
    expr = KroneckerDelta(i, j) * M[i, k]
    assert _codegen_array_parse(expr) == (M, ({i, j}, k))
    expr = KroneckerDelta(i, j) * KroneckerDelta(j, k) * M[i, l]
    assert _codegen_array_parse(expr) == (M, ({i, j, k}, l))
    expr = KroneckerDelta(j, k) * (M[i, j] * N[k, l] + N[i, j] * M[k, l])
    assert _codegen_array_parse(expr) == (CodegenArrayDiagonal(
        CodegenArrayElementwiseAdd(
            CodegenArrayTensorProduct(M, N),
            CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N),
                                    Permutation(0, 2)(1, 3))),
        (1, 2)), (i, l, frozenset({j, k})))
    expr = KroneckerDelta(j, m) * KroneckerDelta(
        m, k) * (M[i, j] * N[k, l] + N[i, j] * M[k, l])
    assert _codegen_array_parse(expr) == (CodegenArrayDiagonal(
        CodegenArrayElementwiseAdd(
            CodegenArrayTensorProduct(M, N),
            CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N),
                                    Permutation(0, 2)(1, 3))),
        (1, 2)), (i, l, frozenset({j, m, k})))
    expr = KroneckerDelta(i, j) * KroneckerDelta(j, k) * KroneckerDelta(
        k, m) * M[i, 0] * KroneckerDelta(m, n)
    assert _codegen_array_parse(expr) == (M, ({i, j, k, m, n}, 0))
    expr = M[i, i]
    assert _codegen_array_parse(expr) == (CodegenArrayDiagonal(M,
                                                               (0, 1)), (i, ))
Beispiel #7
0
def test_normalize_diagonal_permutedims():
    tp = CodegenArrayTensorProduct(M, Q, N, P)
    expr = CodegenArrayDiagonal(
        CodegenArrayPermuteDims(tp, [0, 1, 2, 4, 7, 6, 3, 5]), (2, 4, 5), (6, 7),
        (0, 3))
    result = CodegenArrayDiagonal(tp, (2, 6, 7), (3, 5), (0, 4))
    assert expr == result

    tp = CodegenArrayTensorProduct(M, N, P, Q)
    expr = CodegenArrayDiagonal(CodegenArrayPermuteDims(tp, [0, 5, 2, 4, 1, 6, 3, 7]), (1, 2, 6), (3, 4))
    result = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, P, N, Q), (3, 4, 5), (1, 2))
    assert expr == result
Beispiel #8
0
def test_parsing_of_matrix_expressions():

    expr = M * N
    assert _parse_matrix_expression(expr) == CodegenArrayContraction(
        CodegenArrayTensorProduct(M, N), (1, 2))

    expr = Transpose(M)
    assert _parse_matrix_expression(expr) == CodegenArrayPermuteDims(M, [1, 0])

    expr = M * Transpose(N)
    assert _parse_matrix_expression(expr) == CodegenArrayContraction(
        CodegenArrayTensorProduct(M, CodegenArrayPermuteDims(N, [1, 0])),
        (1, 2))
Beispiel #9
0
def test_codegen_recognize_matrix_expression():

    expr = CodegenArrayElementwiseAdd(M, CodegenArrayPermuteDims(M, [1, 0]))
    assert recognize_matrix_expression(expr) == M + Transpose(M)

    expr = M[i,j] + N[i,j]
    p1, p2 = _codegen_array_parse(expr)
    assert recognize_matrix_expression(p1) == M + N

    expr = M[i,j] + N[j,i]
    p1, p2 = _codegen_array_parse(expr)
    assert recognize_matrix_expression(p1) == M + N.T

    expr = M[i,j]*N[k,l] + N[i,j]*M[k,l]
    p1, p2 = _codegen_array_parse(expr)
    assert recognize_matrix_expression(p1) == CodegenArrayElementwiseAdd(
        CodegenArrayTensorProduct(M, N),
        CodegenArrayTensorProduct(N, M))

    expr = (M*N*P)[i, j]
    p1, p2 = _codegen_array_parse(expr)
    assert recognize_matrix_expression(p1) == M*N*P

    expr = Sum(M[i,j]*(N*P)[j,m], (j, 0, k-1))
    p1, p2 = _codegen_array_parse(expr)
    assert recognize_matrix_expression(p1) == M*N*P

    expr = Sum((P[j, m] + P[m, j])*(M[i,j]*N[m,n] + N[i,j]*M[m,n]), (j, 0, k-1), (m, 0, k-1))
    p1, p2 = _codegen_array_parse(expr)
    assert recognize_matrix_expression(p1) == M*P*N + M*P.T*N + N*P*M + N*P.T*M
Beispiel #10
0
def _(expr: CodegenArrayTensorProduct, x: Expr):
    args = expr.args
    addend_list = []
    for i, arg in enumerate(expr.args):
        darg = array_derive(arg, x)
        if darg == 0:
            continue
        args_prev = args[:i]
        args_succ = args[i + 1:]
        shape_prev = reduce(operator.add, map(get_shape, args_prev), ())
        shape_succ = reduce(operator.add, map(get_shape, args_succ), ())
        addend = CodegenArrayTensorProduct(*args_prev, darg, *args_succ)
        tot1 = len(get_shape(x))
        tot2 = tot1 + len(shape_prev)
        tot3 = tot2 + len(get_shape(arg))
        tot4 = tot3 + len(shape_succ)
        perm = [i for i in range(tot1, tot2)] + \
               [i for i in range(tot1)] + [i for i in range(tot2, tot3)] + \
               [i for i in range(tot3, tot4)]
        addend = CodegenArrayPermuteDims(addend, _af_invert(perm))
        addend_list.append(addend)
    if len(addend_list) == 1:
        return addend_list[0]
    elif len(addend_list) == 0:
        return S.Zero
    else:
        return CodegenArrayElementwiseAdd(*addend_list)
Beispiel #11
0
def _(expr: Inverse, x: Expr):
    mat = expr.I
    dexpr = array_derive(mat, x)
    tp = CodegenArrayTensorProduct(-expr, dexpr, expr)
    mp = CodegenArrayContraction(tp, (1, 4), (5, 6))
    pp = CodegenArrayPermuteDims(mp, [1, 2, 0, 3])
    return pp
Beispiel #12
0
def test_nested_permutations():

    cg = CodegenArrayPermuteDims(CodegenArrayPermuteDims(M, (1, 0)), (1, 0))
    assert cg == M

    times = 3
    plist1 = [list(range(6)) for i in range(times)]
    plist2 = [list(range(6)) for i in range(times)]

    for i in range(times):
        random.shuffle(plist1[i])
        random.shuffle(plist2[i])

    plist1.append([2, 5, 4, 1, 0, 3])
    plist2.append([3, 5, 0, 4, 1, 2])

    plist1.append([2, 5, 4, 0, 3, 1])
    plist2.append([3, 0, 5, 1, 2, 4])

    plist1.append([5, 4, 2, 0, 3, 1])
    plist2.append([4, 5, 0, 2, 3, 1])

    Me = M.subs(k, 3).as_explicit()
    Ne = N.subs(k, 3).as_explicit()
    Pe = P.subs(k, 3).as_explicit()
    cge = tensorproduct(Me, Ne, Pe)

    for permutation_array1, permutation_array2 in zip(plist1, plist2):
        p1 = Permutation(permutation_array1)
        p2 = Permutation(permutation_array2)

        cg = CodegenArrayPermuteDims(
            CodegenArrayPermuteDims(
                CodegenArrayTensorProduct(M, N, P),
                p1),
            p2
        )
        result = CodegenArrayPermuteDims(
            CodegenArrayTensorProduct(M, N, P),
            p2*p1
        )
        assert cg == result

        # Check that `permutedims` behaves the same way with explicit-component arrays:
        result1 = permutedims(permutedims(cge, p1), p2)
        result2 = permutedims(cge, p2*p1)
        assert result1 == result2
Beispiel #13
0
def test_codegen_extra():
    if not np:
        skip("NumPy not installed")

    M = MatrixSymbol("M", 2, 2)
    N = MatrixSymbol("N", 2, 2)
    P = MatrixSymbol("P", 2, 2)
    Q = MatrixSymbol("Q", 2, 2)
    ma = np.matrix([[1, 2], [3, 4]])
    mb = np.matrix([[1, -2], [-1, 3]])
    mc = np.matrix([[2, 0], [1, 2]])
    md = np.matrix([[1, -1], [4, 7]])

    cg = CodegenArrayTensorProduct(M, N)
    f = lambdify((M, N), cg, 'numpy')
    assert (f(ma, mb) == np.einsum(ma, [0, 1], mb, [2, 3])).all()

    cg = CodegenArrayElementwiseAdd(M, N)
    f = lambdify((M, N), cg, 'numpy')
    assert (f(ma, mb) == ma + mb).all()

    cg = CodegenArrayElementwiseAdd(M, N, P)
    f = lambdify((M, N, P), cg, 'numpy')
    assert (f(ma, mb, mc) == ma + mb + mc).all()

    cg = CodegenArrayElementwiseAdd(M, N, P, Q)
    f = lambdify((M, N, P, Q), cg, 'numpy')
    assert (f(ma, mb, mc, md) == ma + mb + mc + md).all()

    cg = CodegenArrayPermuteDims(M, [1, 0])
    f = lambdify((M, ), cg, 'numpy')
    assert (f(ma) == ma.T).all()

    cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 2, 3, 0])
    f = lambdify((M, N), cg, 'numpy')
    assert (f(ma, mb) == np.transpose(np.einsum(ma, [0, 1], mb, [2, 3]),
                                      (1, 2, 3, 0))).all()

    cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N), (1, 2))
    f = lambdify((M, N), cg, 'numpy')
    assert (f(ma, mb) == np.diagonal(np.einsum(ma, [0, 1], mb, [2, 3]),
                                     axis1=1,
                                     axis2=2)).all()
Beispiel #14
0
def test_codegen_array_recognize_matrix_mul_lines():

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(M), (0, 1))
    assert recognize_matrix_expression(cg) == Trace(M)

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 1),
                                 (2, 3))
    assert recognize_matrix_expression(cg) == Trace(M) * Trace(N)

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 3),
                                 (1, 2))
    assert recognize_matrix_expression(cg) == Trace(M * N)

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 2),
                                 (1, 3))
    assert recognize_matrix_expression(cg) == Trace(M * N.T)

    cg = parse_indexed_expression((M * N * P)[i, j])
    assert recognize_matrix_expression(cg) == M * N * P
    cg = parse_matrix_expression(M * N * P)
    assert recognize_matrix_expression(cg) == M * N * P

    cg = parse_indexed_expression((M * N.T * P)[i, j])
    assert recognize_matrix_expression(cg) == M * N.T * P
    cg = parse_matrix_expression(M * N.T * P)
    assert recognize_matrix_expression(cg) == M * N.T * P

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (1, 2),
                                 (5, 6))
    assert recognize_matrix_expression(cg) == CodegenArrayTensorProduct(
        M * N, P * Q)

    expr = -2 * M * N
    elem = expr[i, j]
    cg = parse_indexed_expression(elem)
    assert recognize_matrix_expression(cg) == -2 * M * N

    a = MatrixSymbol("a", k, 1)
    b = MatrixSymbol("b", k, 1)
    c = MatrixSymbol("c", k, 1)
    cg = CodegenArrayPermuteDims(
        CodegenArrayContraction(
            CodegenArrayTensorProduct(
                a,
                CodegenArrayElementwiseAdd(
                    CodegenArrayTensorProduct(b, c),
                    CodegenArrayTensorProduct(c, b),
                )), (2, 4)), [0, 1, 3, 2])
    assert recognize_matrix_expression(cg) == a * (b.T * c + c.T * b)

    za = ZeroArray(m, n)
    assert recognize_matrix_expression(za) == ZeroMatrix(m, n)

    cg = CodegenArrayTensorProduct(3, M)
    assert recognize_matrix_expression(cg) == 3 * M
def test_codegen_recognize_matrix_expression():

    expr = CodegenArrayElementwiseAdd(M, CodegenArrayPermuteDims(M, [1, 0]))
    rec = _recognize_matrix_expression(expr)
    assert rec == _RecognizeMatOp(MatAdd, [M, _RecognizeMatOp(Transpose, [M])])
    assert _unfold_recognized_expr(rec) == M + Transpose(M)

    expr = M[i, j] + N[i, j]
    p1, p2 = _codegen_array_parse(expr)
    rec = _recognize_matrix_expression(p1)
    assert rec == _RecognizeMatOp(MatAdd, [M, N])
    assert _unfold_recognized_expr(rec) == M + N

    expr = M[i, j] + N[j, i]
    p1, p2 = _codegen_array_parse(expr)
    rec = _recognize_matrix_expression(p1)
    assert rec == _RecognizeMatOp(MatAdd, [M, _RecognizeMatOp(Transpose, [N])])
    assert _unfold_recognized_expr(rec) == M + N.T

    expr = M[i, j] * N[k, l] + N[i, j] * M[k, l]
    p1, p2 = _codegen_array_parse(expr)
    rec = _recognize_matrix_expression(p1)
    assert rec == _RecognizeMatOp(
        MatAdd, [_RecognizeMatMulLines([M, N]),
                 _RecognizeMatMulLines([N, M])])
    #assert _unfold_recognized_expr(rec) == TensorProduct(M, N) + TensorProduct(N, M) maybe?

    expr = (M * N * P)[i, j]
    p1, p2 = _codegen_array_parse(expr)
    rec = _recognize_matrix_expression(p1)
    assert rec == _RecognizeMatMulLines([_RecognizeMatOp(MatMul, [M, N, P])])
    assert _unfold_recognized_expr(rec) == M * N * P

    expr = Sum(M[i, j] * (N * P)[j, m], (j, 0, k - 1))
    p1, p2 = _codegen_array_parse(expr)
    rec = _recognize_matrix_expression(p1)
    assert rec == _RecognizeMatOp(MatMul, [M, N, P])
    assert _unfold_recognized_expr(rec) == M * N * P

    expr = Sum((P[j, m] + P[m, j]) * (M[i, j] * N[m, n] + N[i, j] * M[m, n]),
               (j, 0, k - 1), (m, 0, k - 1))
    p1, p2 = _codegen_array_parse(expr)
    rec = _recognize_matrix_expression(p1)
    assert rec == _RecognizeMatOp(MatAdd, [
        _RecognizeMatOp(MatMul, [
            M,
            _RecognizeMatOp(MatAdd, [P, _RecognizeMatOp(Transpose, [P])]), N
        ]),
        _RecognizeMatOp(MatMul, [
            N,
            _RecognizeMatOp(MatAdd, [P, _RecognizeMatOp(Transpose, [P])]), M
        ])
    ])
    assert _unfold_recognized_expr(
        rec) == M * (P + P.T) * N + N * (P + P.T) * M
def test_parsing_of_matrix_expressions():

    expr = M * N
    assert parse_matrix_expression(expr) == CodegenArrayContraction(
        CodegenArrayTensorProduct(M, N), (1, 2))

    expr = Transpose(M)
    assert parse_matrix_expression(expr) == CodegenArrayPermuteDims(M, [1, 0])

    expr = M * Transpose(N)
    assert parse_matrix_expression(expr) == CodegenArrayContraction(
        CodegenArrayTensorProduct(M, CodegenArrayPermuteDims(N, [1, 0])),
        (1, 2))

    expr = 3 * M * N
    res = parse_matrix_expression(expr)
    rexpr = recognize_matrix_expression(res)
    assert expr == rexpr

    expr = 3 * M + N * M.T * M + 4 * k * N
    res = parse_matrix_expression(expr)
    rexpr = recognize_matrix_expression(res)
    assert expr == rexpr

    expr = Inverse(M) * N
    rexpr = recognize_matrix_expression(parse_matrix_expression(expr))
    assert expr == rexpr

    expr = M**2
    rexpr = recognize_matrix_expression(parse_matrix_expression(expr))
    assert expr == rexpr

    expr = M * (2 * N + 3 * M)
    res = parse_matrix_expression(expr)
    rexpr = recognize_matrix_expression(res)
    assert expr.expand() == rexpr.doit()

    expr = Trace(M)
    result = CodegenArrayContraction(M, (0, 1))
    assert parse_matrix_expression(expr) == result
def test_codegen_array_doit():
    M = MatrixSymbol("M", 2, 2)
    N = MatrixSymbol("N", 2, 2)
    P = MatrixSymbol("P", 2, 2)
    Q = MatrixSymbol("Q", 2, 2)

    M = M.as_explicit()
    N = N.as_explicit()
    P = P.as_explicit()
    Q = Q.as_explicit()

    expr = CodegenArrayTensorProduct(M, N, P, Q)
    assert expr.doit() == tensorproduct(M, N, P, Q)
    expr2 = CodegenArrayContraction(expr, (0, 1))
    assert expr2.doit() == tensorcontraction(tensorproduct(M, N, P, Q), (0, 1))
    expr2 = CodegenArrayDiagonal(expr, (0, 1))
    #assert expr2 = ... # TODO: not implemented
    expr = CodegenArrayTensorProduct(M, N)
    exprp = CodegenArrayPermuteDims(expr, [2, 1, 3, 0])
    assert exprp.doit() == permutedims(tensorproduct(M, N), [2, 1, 3, 0])
    expr = CodegenArrayElementwiseAdd(M, N)
    assert expr.doit() == M + N
Beispiel #18
0
def test_recognize_expression_implicit_mul():

    cg = CodegenArrayTensorProduct(a, b)
    assert recognize_matrix_expression(cg) == a*b.T

    cg = CodegenArrayTensorProduct(a, I, b)
    assert recognize_matrix_expression(cg) == a*b.T

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(I, I), (1, 2))
    assert recognize_matrix_expression(cg) == I

    cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(I, Identity(1)), [0, 2, 1, 3])
    assert recognize_matrix_expression(cg) == I
def test_codegen_array_shape():
    expr = CodegenArrayTensorProduct(M, N, P, Q)
    assert expr.shape == (k, k, k, k, k, k, k, k)
    Z = MatrixSymbol("Z", m, n)
    expr = CodegenArrayTensorProduct(M, Z)
    assert expr.shape == (k, k, m, n)
    expr2 = CodegenArrayContraction(expr, (0, 1))
    assert expr2.shape == (m, n)
    expr2 = CodegenArrayDiagonal(expr, (0, 1))
    assert expr2.shape == (m, n, k)
    exprp = CodegenArrayPermuteDims(expr, [2, 1, 3, 0])
    assert exprp.shape == (m, k, n, k)
    expr3 = CodegenArrayTensorProduct(N, Z)
    expr2 = CodegenArrayElementwiseAdd(expr, expr3)
    assert expr2.shape == (k, k, m, n)

    # Contraction along axes with discordant dimensions:
    raises(ValueError, lambda: CodegenArrayContraction(expr, (1, 2)))
    # Also diagonal needs the same dimensions:
    raises(ValueError, lambda: CodegenArrayDiagonal(expr, (1, 2)))
Beispiel #20
0
def test_permute_tensor_product():
    cg1 = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N, P, Q),
                                  Permutation([2, 3, 1, 0, 5, 4, 6, 7]))
    cg2 = CodegenArrayTensorProduct(N, CodegenArrayPermuteDims(M, [1, 0]),
                                    CodegenArrayPermuteDims(P, [1, 0]), Q)
    assert cg1 == cg2

    # TODO: reverse operation starting with `CodegenArrayPermuteDims` and getting down to `bb`...
    cg1 = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N, P, Q),
                                  Permutation([2, 3, 4, 5, 0, 1, 6, 7]))
    cg2 = CodegenArrayTensorProduct(N, P, M, Q)
    assert cg1 == cg2

    cg1 = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N, P, Q),
                                  Permutation([2, 3, 4, 6, 5, 7, 0, 1]))
    assert cg1.expr == CodegenArrayTensorProduct(N, P, Q, M)
    assert cg1.permutation == Permutation([0, 1, 2, 4, 3, 5, 6, 7])

    cg1 = CodegenArrayContraction(
        CodegenArrayPermuteDims(CodegenArrayTensorProduct(N, Q, Q, M),
                                [2, 1, 5, 4, 0, 3, 6, 7]), [1, 2, 6])
    cg2 = CodegenArrayPermuteDims(
        CodegenArrayContraction(CodegenArrayTensorProduct(Q, Q, N, M),
                                (3, 5, 6)), [0, 2, 3, 1, 4])
    assert cg1 == cg2

    cg1 = CodegenArrayContraction(
        CodegenArrayContraction(
            CodegenArrayContraction(
                CodegenArrayContraction(
                    CodegenArrayPermuteDims(
                        CodegenArrayTensorProduct(N, Q, Q, M),
                        [2, 1, 5, 4, 0, 3, 6, 7]), [1, 2, 6]), [1, 3, 4]),
            [1]), [0])
    cg2 = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, Q, Q),
                                  (0, 3, 5), (1, 4, 7), (2, ), (6, ))
    assert cg1 == cg2
Beispiel #21
0
def _(expr: MatrixSymbol, x: Expr):
    m, n = expr.shape
    if expr == x:
        return CodegenArrayPermuteDims(
            CodegenArrayTensorProduct(Identity(m), Identity(n)), [0, 2, 1, 3])
    return ZeroArray(*(x.shape + expr.shape))
Beispiel #22
0
def _(expr: CodegenArrayPermuteDims, x: Expr):
    de = array_derive(expr.expr, x)
    perm = [0, 1] + [i + 2 for i in expr.permutation.array_form]
    return CodegenArrayPermuteDims(de, perm)
Beispiel #23
0
def _(expr: Transpose, x: Expr):
    # D(A.T, A) ==> (m,n,i,j) ==> D(A_ji, A_mn) = d_mj d_ni
    # D(B.T, A) ==> (m,n,i,j) ==> D(B_ji, A_mn)
    fd = array_derive(expr.arg, x)
    return CodegenArrayPermuteDims(fd, [0, 1, 3, 2])
def test_codegen_permutedims_sink():

    cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [0, 1, 3, 2])
    sunk = cg.nest_permutation()
    assert sunk == CodegenArrayTensorProduct(
        M, CodegenArrayPermuteDims(N, [1, 0]))
    assert recognize_matrix_expression(sunk) == [M, N.T]

    cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 0, 3, 2])
    sunk = cg.nest_permutation()
    assert sunk == CodegenArrayTensorProduct(
        CodegenArrayPermuteDims(M, [1, 0]), CodegenArrayPermuteDims(N, [1, 0]))
    assert recognize_matrix_expression(sunk) == [M.T, N.T]

    cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [3, 2, 1, 0])
    sunk = cg.nest_permutation()
    assert sunk == CodegenArrayTensorProduct(
        CodegenArrayPermuteDims(N, [1, 0]), CodegenArrayPermuteDims(M, [1, 0]))
    assert recognize_matrix_expression(sunk) == [N.T, M.T]

    cg = CodegenArrayPermuteDims(
        CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)),
        [1, 0])
    sunk = cg.nest_permutation()
    assert sunk == CodegenArrayContraction(
        CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [[0, 3]]),
        (1, 2))

    cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 0, 3, 2])
    sunk = cg.nest_permutation()
    assert sunk == CodegenArrayTensorProduct(
        CodegenArrayPermuteDims(M, [1, 0]), CodegenArrayPermuteDims(N, [1, 0]))

    cg = CodegenArrayPermuteDims(
        CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P), (1, 2),
                                (3, 4)), [1, 0])
    sunk = cg.nest_permutation()
    assert sunk == CodegenArrayContraction(
        CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N, P), [[0, 5]]),
        (1, 2), (3, 4))
Beispiel #25
0
def permutedims(expr, perm):
    """
    Permutes the indices of an array.

    Parameter specifies the permutation of the indices.

    Examples
    ========

    >>> from sympy.abc import x, y, z, t
    >>> from sympy import sin
    >>> from sympy import Array, permutedims
    >>> a = Array([[x, y, z], [t, sin(x), 0]])
    >>> a
    [[x, y, z], [t, sin(x), 0]]
    >>> permutedims(a, (1, 0))
    [[x, t], [y, sin(x)], [z, 0]]

    If the array is of second order, ``transpose`` can be used:

    >>> from sympy import transpose
    >>> transpose(a)
    [[x, t], [y, sin(x)], [z, 0]]

    Examples on higher dimensions:

    >>> b = Array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
    >>> permutedims(b, (2, 1, 0))
    [[[1, 5], [3, 7]], [[2, 6], [4, 8]]]
    >>> permutedims(b, (1, 2, 0))
    [[[1, 5], [2, 6]], [[3, 7], [4, 8]]]

    ``Permutation`` objects are also allowed:

    >>> from sympy.combinatorics import Permutation
    >>> permutedims(b, Permutation([1, 2, 0]))
    [[[1, 5], [2, 6]], [[3, 7], [4, 8]]]

    """
    from sympy.tensor.array import SparseNDimArray

    from sympy.tensor.array.expressions.array_expressions import _ArrayExpr
    from sympy.codegen.array_utils import _CodegenArrayAbstract, CodegenArrayPermuteDims
    if isinstance(expr, (_ArrayExpr, _CodegenArrayAbstract)):
        return CodegenArrayPermuteDims(expr, perm)

    if not isinstance(expr, NDimArray):
        expr = ImmutableDenseNDimArray(expr)

    from sympy.combinatorics import Permutation
    if not isinstance(perm, Permutation):
        perm = Permutation(list(perm))

    if perm.size != expr.rank():
        raise ValueError("wrong permutation size")

    # Get the inverse permutation:
    iperm = ~perm
    new_shape = perm(expr.shape)

    if isinstance(expr, SparseNDimArray):
        return type(expr)({tuple(perm(expr._get_tuple_index(k))): v
                           for k, v in expr._sparse_array.items()}, new_shape)

    indices_span = perm([range(i) for i in expr.shape])

    new_array = [None]*len(expr)
    for i, idx in enumerate(itertools.product(*indices_span)):
        t = iperm(idx)
        new_array[i] = expr[t]

    return type(expr)(new_array, new_shape)
Beispiel #26
0
def test_codegen_permutedims_sink():

    cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [0, 1, 3, 2])
    sunk = cg.nest_permutation()
    assert sunk == CodegenArrayTensorProduct(M, CodegenArrayPermuteDims(N, [1, 0]))
    assert recognize_matrix_expression(sunk) == [M, N.T]

    cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 0, 3, 2])
    sunk = cg.nest_permutation()
    assert sunk == CodegenArrayTensorProduct(CodegenArrayPermuteDims(M, [1, 0]), CodegenArrayPermuteDims(N, [1, 0]))
    assert recognize_matrix_expression(sunk) == [M.T, N.T]

    cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [3, 2, 1, 0])
    sunk = cg.nest_permutation()
    assert sunk == CodegenArrayTensorProduct(CodegenArrayPermuteDims(N, [1, 0]), CodegenArrayPermuteDims(M, [1, 0]))
    assert recognize_matrix_expression(sunk) == [N.T, M.T]

    cg = CodegenArrayPermuteDims(CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)), [1, 0])
    sunk = cg.nest_permutation()
    assert sunk == CodegenArrayContraction(CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [[0, 3]]), (1, 2))

    cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 0, 3, 2])
    sunk = cg.nest_permutation()
    assert sunk == CodegenArrayTensorProduct(CodegenArrayPermuteDims(M, [1, 0]), CodegenArrayPermuteDims(N, [1, 0]))

    cg = CodegenArrayPermuteDims(CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P), (1, 2), (3, 4)), [1, 0])
    sunk = cg.nest_permutation()
    assert sunk == CodegenArrayContraction(CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N, P), [[0, 5]]), (1, 2), (3, 4))
    sunk2 = sunk.expr.nest_permutation()
Beispiel #27
0
def test_recognize_products_support_function():
    A = MatrixSymbol("A", k, k)
    B = MatrixSymbol("B", k, k)
    C = MatrixSymbol("C", k, k)
    D = MatrixSymbol("D", k, k)

    X = MatrixSymbol("X", k, k)
    Y = MatrixSymbol("Y", k, k)

    assert _support_function_tp1_recognize([], [2 * k]) == 2 * k

    assert _support_function_tp1_recognize([(1, 2)],
                                           [A, 2 * k, B, 3]) == 6 * k * A * B

    assert _support_function_tp1_recognize([(0, 3), (1, 2)],
                                           [A, B]) == Trace(A * B)

    assert _support_function_tp1_recognize([(1, 2)], [A, B]) == A * B
    assert _support_function_tp1_recognize([(0, 2)], [A, B]) == A.T * B
    assert _support_function_tp1_recognize([(1, 3)], [A, B]) == A * B.T
    assert _support_function_tp1_recognize([(0, 3)], [A, B]) == A.T * B.T

    assert _support_function_tp1_recognize(
        [(1, 2),
         (5, 6)], [A, B, C, D]) == CodegenArrayTensorProduct(A * B, C * D)
    assert _support_function_tp1_recognize(
        [(1, 4), (3, 6)], [A, B, C, D]) == CodegenArrayPermuteDims(
            CodegenArrayTensorProduct(A * C, B * D), [0, 2, 1, 3])

    assert _support_function_tp1_recognize([(0, 3), (1, 4)],
                                           [A, B, C]) == B * A * C

    assert _support_function_tp1_recognize(
        [(9, 10), (1, 2), (5, 6), (3, 4),
         (7, 8)], [X, Y, A, B, C, D]) == X * Y * A * B * C * D

    assert _support_function_tp1_recognize(
        [(9, 10), (1, 2), (5, 6), (3, 4)],
        [X, Y, A, B, C, D]) == CodegenArrayTensorProduct(X * Y * A * B, C * D)

    assert _support_function_tp1_recognize(
        [(1, 7), (3, 8),
         (4, 11)], [X, Y, A, B, C, D]) == CodegenArrayPermuteDims(
             CodegenArrayTensorProduct(X * B.T, Y * C, D * A),
             [0, 2, 5, 1, 3, 4])

    assert _support_function_tp1_recognize(
        [(0, 1), (3, 6), (5, 8)], [X, A, B, C, D]) == CodegenArrayPermuteDims(
            CodegenArrayTensorProduct(Trace(X) * A * C, B * D), [0, 2, 1, 3])

    assert _support_function_tp1_recognize([(1, 2), (3, 4), (5, 6), (7, 8)],
                                           [A, A, B, C, D]) == A**2 * B * C * D
    assert _support_function_tp1_recognize(
        [(1, 2), (3, 4), (5, 6), (7, 8)], [X, A, B, C, D]) == X * A * B * C * D

    assert _support_function_tp1_recognize(
        [(1, 6), (3, 8), (5, 10)],
        [X, Y, A, B, C, D]) == CodegenArrayPermuteDims(
            CodegenArrayTensorProduct(X * B, Y * C, A * D), [0, 2, 4, 1, 3, 5])

    assert _support_function_tp1_recognize(
        [(1, 4), (3, 6)], [A, B, C, D]) == CodegenArrayPermuteDims(
            CodegenArrayTensorProduct(A * C, B * D), [0, 2, 1, 3])

    assert _support_function_tp1_recognize(
        [(0, 4), (1, 7), (2, 5),
         (3, 8)], [X, A, B, C, D]) == C * X.T * B * A * D

    assert _support_function_tp1_recognize(
        [(0, 4), (1, 7), (2, 5),
         (3, 8)], [X, A, B, C, D]) == C * X.T * B * A * D
Beispiel #28
0
def test_recognize_diagonalized_vectors():

    a = MatrixSymbol("a", k, 1)
    b = MatrixSymbol("b", k, 1)
    A = MatrixSymbol("A", k, k)
    B = MatrixSymbol("B", k, k)
    C = MatrixSymbol("C", k, k)
    X = MatrixSymbol("X", k, k)
    x = MatrixSymbol("x", k, 1)
    I1 = Identity(1)
    I = Identity(k)

    # Check matrix recognition over trivial dimensions:

    cg = CodegenArrayTensorProduct(a, b)
    assert recognize_matrix_expression(cg) == a * b.T

    cg = CodegenArrayTensorProduct(I1, a, b)
    assert recognize_matrix_expression(cg) == a * b.T

    # Recognize trace inside a tensor product:

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, B, C), (0, 3),
                                 (1, 2))
    assert recognize_matrix_expression(cg) == Trace(A * B) * C

    # Transform diagonal operator to contraction:

    cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(A, a), (1, 2))
    assert _array_diag2contr_diagmatrix(cg) == CodegenArrayContraction(
        CodegenArrayTensorProduct(A, OneArray(1), DiagMatrix(a)), (1, 3))
    assert recognize_matrix_expression(cg) == A * DiagMatrix(a)

    cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(a, b), (0, 2))
    assert _array_diag2contr_diagmatrix(cg) == CodegenArrayPermuteDims(
        CodegenArrayContraction(
            CodegenArrayTensorProduct(DiagMatrix(a), OneArray(1), b), (0, 3)),
        [1, 2, 0])
    assert recognize_matrix_expression(cg) == b.T * DiagMatrix(a)

    cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(A, a), (0, 2))
    assert _array_diag2contr_diagmatrix(cg) == CodegenArrayContraction(
        CodegenArrayTensorProduct(A, OneArray(1), DiagMatrix(a)), (0, 3))
    assert recognize_matrix_expression(cg) == A.T * DiagMatrix(a)

    cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(I, x, I1), (0, 2),
                              (3, 5))
    assert _array_diag2contr_diagmatrix(cg) == CodegenArrayContraction(
        CodegenArrayTensorProduct(I, OneArray(1), I1, DiagMatrix(x)), (0, 5))
    assert recognize_matrix_expression(cg) == DiagMatrix(x)

    cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(I, x, A, B), (1, 2),
                              (5, 6))
    assert _array_diag2contr_diagmatrix(cg) == CodegenArrayDiagonal(
        CodegenArrayContraction(
            CodegenArrayTensorProduct(I, OneArray(1), A, B, DiagMatrix(x)),
            (1, 7)), (5, 6))
    # TODO: not yet working
    #  assert recognize_matrix_expression(cg)

    cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(x, I1), (1, 2))
    assert isinstance(cg, CodegenArrayDiagonal)
    assert cg.diagonal_indices == ((1, 2), )
    assert recognize_matrix_expression(cg) == x

    cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(x, I), (0, 2))
    assert _array_diag2contr_diagmatrix(cg) == CodegenArrayContraction(
        CodegenArrayTensorProduct(OneArray(1), I, DiagMatrix(x)), (1, 3))
    assert recognize_matrix_expression(cg).doit() == DiagMatrix(x)

    raises(ValueError, lambda: CodegenArrayDiagonal(x, (1, )))

    # Ignore identity matrices with contractions:

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(I, A, I, I), (0, 2),
                                 (1, 3), (5, 7))
    assert cg.split_multiple_contractions() == cg
    assert recognize_matrix_expression(cg) == Trace(A) * I

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(Trace(A) * I, I, I),
                                 (1, 5), (3, 4))
    assert cg.split_multiple_contractions() == cg
    assert recognize_matrix_expression(cg).doit() == Trace(A) * I

    # Add DiagMatrix when required:

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a), (1, 2))
    assert cg.split_multiple_contractions() == cg
    assert recognize_matrix_expression(cg) == A * a

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, B), (1, 2, 4))
    assert cg.split_multiple_contractions() == CodegenArrayContraction(
        CodegenArrayTensorProduct(A, DiagMatrix(a), B), (1, 2), (3, 4))
    assert recognize_matrix_expression(cg) == A * DiagMatrix(a) * B

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, B), (0, 2, 4))
    assert cg.split_multiple_contractions() == CodegenArrayContraction(
        CodegenArrayTensorProduct(A, DiagMatrix(a), B), (0, 2), (3, 4))
    assert recognize_matrix_expression(cg) == A.T * DiagMatrix(a) * B

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, b, a.T, B),
                                 (0, 2, 4, 7, 9))
    assert cg.split_multiple_contractions() == CodegenArrayContraction(
        CodegenArrayTensorProduct(A, DiagMatrix(a), DiagMatrix(b),
                                  DiagMatrix(a), B), (0, 2), (3, 4), (5, 7),
        (6, 9))
    assert recognize_matrix_expression(
        cg).doit() == A.T * DiagMatrix(a) * DiagMatrix(b) * DiagMatrix(a) * B.T

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(I1, I1, I1),
                                 (1, 2, 4))
    assert cg.split_multiple_contractions() == CodegenArrayContraction(
        CodegenArrayTensorProduct(I1, I1, I1), (1, 2), (3, 4))
    assert recognize_matrix_expression(cg).doit() == Identity(1)

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(I, I, I, I, A),
                                 (1, 2, 8), (5, 6, 9))
    assert recognize_matrix_expression(
        cg.split_multiple_contractions()).doit() == A

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, C, a, B),
                                 (1, 2, 4), (5, 6, 8))
    expected = CodegenArrayContraction(
        CodegenArrayTensorProduct(DiagMatrix(a), DiagMatrix(a), C, A, B),
        (0, 4), (1, 7), (2, 5), (3, 8))
    assert cg.split_multiple_contractions() == expected
    assert recognize_matrix_expression(
        cg) == A * DiagMatrix(a) * C * DiagMatrix(a) * B

    cg = CodegenArrayContraction(
        CodegenArrayTensorProduct(a, I1, b, I1, (a.T * b).applyfunc(cos)),
        (1, 2, 8), (5, 6, 9))
    assert cg.split_multiple_contractions().dummy_eq(
        CodegenArrayContraction(
            CodegenArrayTensorProduct((a.T * b).applyfunc(cos), I1, I1, a, b),
            (0, 2), (1, 4), (3, 7), (5, 9)))
    assert recognize_matrix_expression(cg).doit().dummy_eq(
        MatMul(a, (a.T * b).applyfunc(cos), b.T))

    cg = CodegenArrayContraction(
        CodegenArrayTensorProduct(A.T, a, b, b.T, (A * X * b).applyfunc(cos)),
        (1, 2, 8), (5, 6, 9))
    assert cg.split_multiple_contractions().dummy_eq(
        CodegenArrayContraction(
            CodegenArrayTensorProduct(DiagMatrix(a),
                                      (A * X * b).applyfunc(cos), A.T, b, b.T),
            (0, 2), (1, 5), (3, 7, 8)))
    # assert recognize_matrix_expression(cg)

    # Check no overlap of lines:

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, C, a, B),
                                 (1, 2, 4), (5, 6, 8), (3, 7))
    assert cg.split_multiple_contractions() == cg

    cg = CodegenArrayContraction(CodegenArrayTensorProduct(a, b, A), (0, 2, 4),
                                 (1, 3))
    assert cg.split_multiple_contractions() == cg
Beispiel #29
0
def test_codegen_extra():
    if not tf:
        skip("TensorFlow not installed")

    graph = tf.Graph()
    with graph.as_default():
        session = tf.compat.v1.Session()

        M = MatrixSymbol("M", 2, 2)
        N = MatrixSymbol("N", 2, 2)
        P = MatrixSymbol("P", 2, 2)
        Q = MatrixSymbol("Q", 2, 2)
        ma = tf.constant([[1, 2], [3, 4]])
        mb = tf.constant([[1, -2], [-1, 3]])
        mc = tf.constant([[2, 0], [1, 2]])
        md = tf.constant([[1, -1], [4, 7]])

        cg = CodegenArrayTensorProduct(M, N)
        assert tensorflow_code(cg) == \
            'tensorflow.linalg.einsum("ab,cd", M, N)'
        f = lambdify((M, N), cg, 'tensorflow')
        y = session.run(f(ma, mb))
        c = session.run(tf.einsum("ij,kl", ma, mb))
        assert (y == c).all()

        cg = CodegenArrayElementwiseAdd(M, N)
        assert tensorflow_code(cg) == 'tensorflow.math.add(M, N)'
        f = lambdify((M, N), cg, 'tensorflow')
        y = session.run(f(ma, mb))
        c = session.run(ma + mb)
        assert (y == c).all()

        cg = CodegenArrayElementwiseAdd(M, N, P)
        assert tensorflow_code(cg) == \
            'tensorflow.math.add(tensorflow.math.add(M, N), P)'
        f = lambdify((M, N, P), cg, 'tensorflow')
        y = session.run(f(ma, mb, mc))
        c = session.run(ma + mb + mc)
        assert (y == c).all()

        cg = CodegenArrayElementwiseAdd(M, N, P, Q)
        assert tensorflow_code(cg) == \
            'tensorflow.math.add(' \
                'tensorflow.math.add(tensorflow.math.add(M, N), P), Q)'
        f = lambdify((M, N, P, Q), cg, 'tensorflow')
        y = session.run(f(ma, mb, mc, md))
        c = session.run(ma + mb + mc + md)
        assert (y == c).all()

        cg = CodegenArrayPermuteDims(M, [1, 0])
        assert tensorflow_code(cg) == 'tensorflow.transpose(M, [1, 0])'
        f = lambdify((M, ), cg, 'tensorflow')
        y = session.run(f(ma))
        c = session.run(tf.transpose(ma))
        assert (y == c).all()

        cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N),
                                     [1, 2, 3, 0])
        assert tensorflow_code(cg) == \
            'tensorflow.transpose(' \
                'tensorflow.linalg.einsum("ab,cd", M, N), [1, 2, 3, 0])'
        f = lambdify((M, N), cg, 'tensorflow')
        y = session.run(f(ma, mb))
        c = session.run(tf.transpose(tf.einsum("ab,cd", ma, mb), [1, 2, 3, 0]))
        assert (y == c).all()

        cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N), (1, 2))
        assert tensorflow_code(cg) == \
            'tensorflow.linalg.einsum("ab,bc->acb", M, N)'
        f = lambdify((M, N), cg, 'tensorflow')
        y = session.run(f(ma, mb))
        c = session.run(tf.einsum("ab,bc->acb", ma, mb))
        assert (y == c).all()
Beispiel #30
0
def test_array_wrong_permutation_size():
    cg = CodegenArrayTensorProduct(M, N)
    raises(ValueError, lambda: CodegenArrayPermuteDims(cg, [1, 0]))
    raises(ValueError, lambda: CodegenArrayPermuteDims(cg, [1, 0, 2, 3, 5, 4]))
Beispiel #31
0
def test_parsing_of_matrix_expressions():

    expr = M*N
    assert parse_matrix_expression(expr) == CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2))

    expr = Transpose(M)
    assert parse_matrix_expression(expr) == CodegenArrayPermuteDims(M, [1, 0])

    expr = M*Transpose(N)
    assert parse_matrix_expression(expr) == CodegenArrayContraction(CodegenArrayTensorProduct(M, CodegenArrayPermuteDims(N, [1, 0])), (1, 2))

    expr = 3*M*N
    res = parse_matrix_expression(expr)
    rexpr = recognize_matrix_expression(res)
    assert expr == rexpr

    expr = 3*M + N*M.T*M + 4*k*N
    res = parse_matrix_expression(expr)
    rexpr = recognize_matrix_expression(res)
    assert expr == rexpr

    expr = Inverse(M)*N
    rexpr = recognize_matrix_expression(parse_matrix_expression(expr))
    assert expr == rexpr

    expr = M**2
    rexpr = recognize_matrix_expression(parse_matrix_expression(expr))
    assert expr == rexpr

    expr = M*(2*N + 3*M)
    res = parse_matrix_expression(expr)
    rexpr = recognize_matrix_expression(res)
    assert expr == rexpr

    expr = Trace(M)
    result = CodegenArrayContraction(M, (0, 1))
    assert parse_matrix_expression(expr) == result

    expr = 3*Trace(M)
    result = CodegenArrayContraction(CodegenArrayTensorProduct(3, M), (0, 1))
    assert parse_matrix_expression(expr) == result

    expr = 3*Trace(Trace(M) * M)
    result = CodegenArrayContraction(CodegenArrayTensorProduct(3, M, M), (0, 1), (2, 3))
    assert parse_matrix_expression(expr) == result

    expr = 3*Trace(M)**2
    result = CodegenArrayContraction(CodegenArrayTensorProduct(3, M, M), (0, 1), (2, 3))
    assert parse_matrix_expression(expr) == result

    expr = HadamardProduct(M, N)
    result = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N), (0, 2), (1, 3))
    assert parse_matrix_expression(expr) == result

    expr = HadamardPower(M, 2)
    result = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, M), (0, 2), (1, 3))
    assert parse_matrix_expression(expr) == result

    expr = M**2
    assert isinstance(expr, MatPow)
    assert parse_matrix_expression(expr) == CodegenArrayContraction(CodegenArrayTensorProduct(M, M), (1, 2))