Beispiel #1
0
def test_center_of_mass():
    a = ReferenceFrame('a')
    m = symbols('m', real=True)
    p1 = Particle('p1', Point('p1_pt'), S.One)
    p2 = Particle('p2', Point('p2_pt'), S(2))
    p3 = Particle('p3', Point('p3_pt'), S(3))
    p4 = Particle('p4', Point('p4_pt'), m)
    b_f = ReferenceFrame('b_f')
    b_cm = Point('b_cm')
    mb = symbols('mb')
    b = RigidBody('b', b_cm, b_f, mb, (outer(b_f.x, b_f.x), b_cm))
    p2.point.set_pos(p1.point, a.x)
    p3.point.set_pos(p1.point, a.x + a.y)
    p4.point.set_pos(p1.point, a.y)
    b.masscenter.set_pos(p1.point, a.y + a.z)
    point_o=Point('o')
    point_o.set_pos(p1.point, center_of_mass(p1.point, p1, p2, p3, p4, b))
    expr = 5/(m + mb + 6)*a.x + (m + mb + 3)/(m + mb + 6)*a.y + mb/(m + mb + 6)*a.z
    assert point_o.pos_from(p1.point)-expr == 0
Beispiel #2
0
def kinetic_energy(frame, *body):
    """Kinetic energy of a multibody system.

    This function returns the kinetic energy of a system of Particle's and/or
    RigidBody's. The kinetic energy of such a system is equal to the sum of
    the kinetic energies of its constituents. Consider a system, S, comprising
    a rigid body, A, and a particle, P. The kinetic energy of the system, T,
    is equal to the vector sum of the kinetic energy of the particle, T1, and
    the kinetic energy of the rigid body, T2, i.e.

    T = T1 + T2

    Kinetic energy is a scalar.

    Parameters
    ==========

    frame : ReferenceFrame
        The frame in which the velocity or angular velocity of the body is
        defined.
    body1, body2, body3... : Particle and/or RigidBody
        The body (or bodies) whose kinetic energy is required.

    Examples
    ========

    >>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame
    >>> from sympy.physics.mechanics import RigidBody, outer, kinetic_energy
    >>> N = ReferenceFrame('N')
    >>> O = Point('O')
    >>> O.set_vel(N, 0 * N.x)
    >>> P = O.locatenew('P', 1 * N.x)
    >>> P.set_vel(N, 10 * N.x)
    >>> Pa = Particle('Pa', P, 1)
    >>> Ac = O.locatenew('Ac', 2 * N.y)
    >>> Ac.set_vel(N, 5 * N.y)
    >>> a = ReferenceFrame('a')
    >>> a.set_ang_vel(N, 10 * N.z)
    >>> I = outer(N.z, N.z)
    >>> A = RigidBody('A', Ac, a, 20, (I, Ac))
    >>> kinetic_energy(N, Pa, A)
    350

    """

    if not isinstance(frame, ReferenceFrame):
        raise TypeError('Please enter a valid ReferenceFrame')
    ke_sys = S(0)
    for e in body:
        if isinstance(e, (RigidBody, Particle)):
            ke_sys += e.kinetic_energy(frame)
        else:
            raise TypeError('*body must have only Particle or RigidBody')
    return ke_sys
Beispiel #3
0
def test_center_of_mass():
    a = ReferenceFrame("a")
    m = symbols("m", real=True)
    p1 = Particle("p1", Point("p1_pt"), S.One)
    p2 = Particle("p2", Point("p2_pt"), S(2))
    p3 = Particle("p3", Point("p3_pt"), S(3))
    p4 = Particle("p4", Point("p4_pt"), m)
    b_f = ReferenceFrame("b_f")
    b_cm = Point("b_cm")
    mb = symbols("mb")
    b = RigidBody("b", b_cm, b_f, mb, (outer(b_f.x, b_f.x), b_cm))
    p2.point.set_pos(p1.point, a.x)
    p3.point.set_pos(p1.point, a.x + a.y)
    p4.point.set_pos(p1.point, a.y)
    b.masscenter.set_pos(p1.point, a.y + a.z)
    point_o = Point("o")
    point_o.set_pos(p1.point, center_of_mass(p1.point, p1, p2, p3, p4, b))
    expr = (5 / (m + mb + 6) * a.x + (m + mb + 3) / (m + mb + 6) * a.y + mb /
            (m + mb + 6) * a.z)
    assert point_o.pos_from(p1.point) - expr == 0
Beispiel #4
0
def potential_energy(*body):
    """Potential energy of a multibody system.

    This function returns the potential energy of a system of Particle's and/or
    RigidBody's. The potential energy of such a system is equal to the sum of
    the potential energy of its constituents. Consider a system, S, comprising
    a rigid body, A, and a particle, P. The potential energy of the system, V,
    is equal to the vector sum of the potential energy of the particle, V1, and
    the potential energy of the rigid body, V2, i.e.

    V = V1 + V2

    Potential energy is a scalar.

    Parameters
    ==========

    body1, body2, body3... : Particle and/or RigidBody
        The body (or bodies) whose potential energy is required.

    Examples
    ========

    >>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame
    >>> from sympy.physics.mechanics import RigidBody, outer, potential_energy
    >>> from sympy import symbols
    >>> M, m, g, h = symbols('M m g h')
    >>> N = ReferenceFrame('N')
    >>> O = Point('O')
    >>> O.set_vel(N, 0 * N.x)
    >>> P = O.locatenew('P', 1 * N.x)
    >>> Pa = Particle('Pa', P, m)
    >>> Ac = O.locatenew('Ac', 2 * N.y)
    >>> a = ReferenceFrame('a')
    >>> I = outer(N.z, N.z)
    >>> A = RigidBody('A', Ac, a, M, (I, Ac))
    >>> Pa.potential_energy = m * g * h
    >>> A.potential_energy = M * g * h
    >>> potential_energy(Pa, A)
    M*g*h + g*h*m

    """

    pe_sys = S(0)
    for e in body:
        if isinstance(e, (RigidBody, Particle)):
            pe_sys += e.potential_energy
        else:
            raise TypeError('*body must have only Particle or RigidBody')
    return pe_sys
Beispiel #5
0
    def __and__(self, other):
        """Dot product of two vectors.

        Returns a scalar, the dot product of the two Vectors

        Parameters
        ==========

        other : Vector
            The Vector which we are dotting with

        Examples
        ========

        >>> from sympy.physics.vector import ReferenceFrame, dot
        >>> from sympy import symbols
        >>> q1 = symbols('q1')
        >>> N = ReferenceFrame('N')
        >>> dot(N.x, N.x)
        1
        >>> dot(N.x, N.y)
        0
        >>> A = N.orientnew('A', 'Axis', [q1, N.x])
        >>> dot(N.y, A.y)
        cos(q1)

        """

        from sympy.physics.vector.dyadic import Dyadic
        if isinstance(other, Dyadic):
            return NotImplemented
        other = _check_vector(other)
        out = S(0)
        for i, v1 in enumerate(self.args):
            for j, v2 in enumerate(other.args):
                out += ((v2[0].T)
                        * (v2[1].dcm(v1[1]))
                        * (v1[0]))[0]
        if Vector.simp:
            return trigsimp(sympify(out), recursive=True)
        else:
            return sympify(out)
Beispiel #6
0
def get_motion_params(frame, **kwargs):
    """
    Returns the three motion parameters - (acceleration, velocity, and
    position) as vectorial functions of time in the given frame.

    If a higher order differential function is provided, the lower order
    functions are used as boundary conditions. For example, given the
    acceleration, the velocity and position parameters are taken as
    boundary conditions.

    The values of time at which the boundary conditions are specified
    are taken from timevalue1(for position boundary condition) and
    timevalue2(for velocity boundary condition).

    If any of the boundary conditions are not provided, they are taken
    to be zero by default (zero vectors, in case of vectorial inputs). If
    the boundary conditions are also functions of time, they are converted
    to constants by substituting the time values in the dynamicsymbols._t
    time Symbol.

    This function can also be used for calculating rotational motion
    parameters. Have a look at the Parameters and Examples for more clarity.

    Parameters
    ==========

    frame : ReferenceFrame
        The frame to express the motion parameters in

    acceleration : Vector
        Acceleration of the object/frame as a function of time

    velocity : Vector
        Velocity as function of time or as boundary condition
        of velocity at time = timevalue1

    position : Vector
        Velocity as function of time or as boundary condition
        of velocity at time = timevalue1

    timevalue1 : sympyfiable
        Value of time for position boundary condition

    timevalue2 : sympyfiable
        Value of time for velocity boundary condition

    Examples
    ========

    >>> from sympy.physics.vector import ReferenceFrame, get_motion_params, dynamicsymbols
    >>> from sympy import symbols
    >>> R = ReferenceFrame('R')
    >>> v1, v2, v3 = dynamicsymbols('v1 v2 v3')
    >>> v = v1*R.x + v2*R.y + v3*R.z
    >>> get_motion_params(R, position = v)
    (v1''*R.x + v2''*R.y + v3''*R.z, v1'*R.x + v2'*R.y + v3'*R.z, v1*R.x + v2*R.y + v3*R.z)
    >>> a, b, c = symbols('a b c')
    >>> v = a*R.x + b*R.y + c*R.z
    >>> get_motion_params(R, velocity = v)
    (0, a*R.x + b*R.y + c*R.z, a*t*R.x + b*t*R.y + c*t*R.z)
    >>> parameters = get_motion_params(R, acceleration = v)
    >>> parameters[1]
    a*t*R.x + b*t*R.y + c*t*R.z
    >>> parameters[2]
    a*t**2/2*R.x + b*t**2/2*R.y + c*t**2/2*R.z

    """

    ##Helper functions

    def _process_vector_differential(vectdiff, condition, \
                                     variable, ordinate, frame):
        """
        Helper function for get_motion methods. Finds derivative of vectdiff wrt
        variable, and its integral using the specified boundary condition at
        value of variable = ordinate.
        Returns a tuple of - (derivative, function and integral) wrt vectdiff

        """

        #Make sure boundary condition is independent of 'variable'
        if condition != 0:
            condition = express(condition, frame, variables=True)
        #Special case of vectdiff == 0
        if vectdiff == Vector(0):
            return (0, 0, condition)
        #Express vectdiff completely in condition's frame to give vectdiff1
        vectdiff1 = express(vectdiff, frame)
        #Find derivative of vectdiff
        vectdiff2 = time_derivative(vectdiff, frame)
        #Integrate and use boundary condition
        vectdiff0 = Vector(0)
        lims = (variable, ordinate, variable)
        for dim in frame:
            function1 = vectdiff1.dot(dim)
            abscissa = dim.dot(condition).subs({variable: ordinate})
            # Indefinite integral of 'function1' wrt 'variable', using
            # the given initial condition (ordinate, abscissa).
            vectdiff0 += (integrate(function1, lims) + abscissa) * dim
        #Return tuple
        return (vectdiff2, vectdiff, vectdiff0)

    ##Function body

    _check_frame(frame)
    #Decide mode of operation based on user's input
    if 'acceleration' in kwargs:
        mode = 2
    elif 'velocity' in kwargs:
        mode = 1
    else:
        mode = 0
    #All the possible parameters in kwargs
    #Not all are required for every case
    #If not specified, set to default values(may or may not be used in
    #calculations)
    conditions = [
        'acceleration', 'velocity', 'position', 'timevalue', 'timevalue1',
        'timevalue2'
    ]
    for i, x in enumerate(conditions):
        if x not in kwargs:
            if i < 3:
                kwargs[x] = Vector(0)
            else:
                kwargs[x] = S(0)
        elif i < 3:
            _check_vector(kwargs[x])
        else:
            kwargs[x] = sympify(kwargs[x])
    if mode == 2:
        vel = _process_vector_differential(kwargs['acceleration'],
                                           kwargs['velocity'],
                                           dynamicsymbols._t,
                                           kwargs['timevalue2'], frame)[2]
        pos = _process_vector_differential(vel, kwargs['position'],
                                           dynamicsymbols._t,
                                           kwargs['timevalue1'], frame)[2]
        return (kwargs['acceleration'], vel, pos)
    elif mode == 1:
        return _process_vector_differential(kwargs['velocity'],
                                            kwargs['position'],
                                            dynamicsymbols._t,
                                            kwargs['timevalue1'], frame)
    else:
        vel = time_derivative(kwargs['position'], frame)
        acc = time_derivative(vel, frame)
        return (acc, vel, kwargs['position'])
Beispiel #7
0
def test_type_F():
    c = CartanType("F4")
    m = Matrix(4, 4, [2, -1, 0, 0, -1, 2, -2, 0, 0, -1, 2, -1, 0, 0, -1, 2])
    assert c.cartan_matrix() == m
    assert c.dimension() == 4
    assert c.simple_root(3) == [0, 0, 0, 1]
    assert c.simple_root(4) == [-S(1) / 2, -S(1) / 2, -S(1) / 2, -S(1) / 2]
    assert c.roots() == 48
    assert c.basis() == 52
    diag = "0---0=>=0---0\n" + "   ".join(str(i) for i in range(1, 5))
    assert c.dynkin_diagram() == diag
    assert c.positive_roots() == {
        1: [1, -1, 0, 0],
        2: [1, 1, 0, 0],
        3: [1, 0, -1, 0],
        4: [1, 0, 1, 0],
        5: [1, 0, 0, -1],
        6: [1, 0, 0, 1],
        7: [0, 1, -1, 0],
        8: [0, 1, 1, 0],
        9: [0, 1, 0, -1],
        10: [0, 1, 0, 1],
        11: [0, 0, 1, -1],
        12: [0, 0, 1, 1],
        13: [1, 0, 0, 0],
        14: [0, 1, 0, 0],
        15: [0, 0, 1, 0],
        16: [0, 0, 0, 1],
        17: [S(1) / 2, S(1) / 2, S(1) / 2,
             S(1) / 2],
        18: [S(1) / 2, S(-1) / 2, S(1) / 2,
             S(1) / 2],
        19: [S(1) / 2, S(1) / 2, S(-1) / 2,
             S(1) / 2],
        20: [S(1) / 2, S(1) / 2, S(1) / 2,
             S(-1) / 2],
        21: [S(1) / 2, S(1) / 2, S(-1) / 2,
             S(-1) / 2],
        22: [S(1) / 2, S(-1) / 2, S(1) / 2,
             S(-1) / 2],
        23: [S(1) / 2, S(-1) / 2, S(-1) / 2,
             S(1) / 2],
        24: [S(1) / 2, S(-1) / 2, S(-1) / 2,
             S(-1) / 2]
    }
def test_linearize_rolling_disc_kane():
    # Symbols for time and constant parameters
    t, r, m, g, v = symbols('t r m g v')

    # Configuration variables and their time derivatives
    q1, q2, q3, q4, q5, q6 = q = dynamicsymbols('q1:7')
    q1d, q2d, q3d, q4d, q5d, q6d = qd = [qi.diff(t) for qi in q]

    # Generalized speeds and their time derivatives
    u = dynamicsymbols('u:6')
    u1, u2, u3, u4, u5, u6 = u = dynamicsymbols('u1:7')
    u1d, u2d, u3d, u4d, u5d, u6d = [ui.diff(t) for ui in u]

    # Reference frames
    N = ReferenceFrame('N')  # Inertial frame
    NO = Point('NO')  # Inertial origin
    A = N.orientnew('A', 'Axis', [q1, N.z])  # Yaw intermediate frame
    B = A.orientnew('B', 'Axis', [q2, A.x])  # Lean intermediate frame
    C = B.orientnew('C', 'Axis', [q3, B.y])  # Disc fixed frame
    CO = NO.locatenew('CO', q4 * N.x + q5 * N.y + q6 * N.z)  # Disc center

    # Disc angular velocity in N expressed using time derivatives of coordinates
    w_c_n_qd = C.ang_vel_in(N)
    w_b_n_qd = B.ang_vel_in(N)

    # Inertial angular velocity and angular acceleration of disc fixed frame
    C.set_ang_vel(N, u1 * B.x + u2 * B.y + u3 * B.z)

    # Disc center velocity in N expressed using time derivatives of coordinates
    v_co_n_qd = CO.pos_from(NO).dt(N)

    # Disc center velocity in N expressed using generalized speeds
    CO.set_vel(N, u4 * C.x + u5 * C.y + u6 * C.z)

    # Disc Ground Contact Point
    P = CO.locatenew('P', r * B.z)
    P.v2pt_theory(CO, N, C)

    # Configuration constraint
    f_c = Matrix([q6 - dot(CO.pos_from(P), N.z)])

    # Velocity level constraints
    f_v = Matrix([dot(P.vel(N), uv) for uv in C])

    # Kinematic differential equations
    kindiffs = Matrix([dot(w_c_n_qd - C.ang_vel_in(N), uv) for uv in B] +
                      [dot(v_co_n_qd - CO.vel(N), uv) for uv in N])
    qdots = solve(kindiffs, qd)

    # Set angular velocity of remaining frames
    B.set_ang_vel(N, w_b_n_qd.subs(qdots))
    C.set_ang_acc(
        N,
        C.ang_vel_in(N).dt(B) + cross(B.ang_vel_in(N), C.ang_vel_in(N)))

    # Active forces
    F_CO = m * g * A.z

    # Create inertia dyadic of disc C about point CO
    I = (m * r**2) / 4
    J = (m * r**2) / 2
    I_C_CO = inertia(C, I, J, I)

    Disc = RigidBody('Disc', CO, C, m, (I_C_CO, CO))
    BL = [Disc]
    FL = [(CO, F_CO)]
    KM = KanesMethod(N, [q1, q2, q3, q4, q5], [u1, u2, u3],
                     kd_eqs=kindiffs,
                     q_dependent=[q6],
                     configuration_constraints=f_c,
                     u_dependent=[u4, u5, u6],
                     velocity_constraints=f_v)
    with warns_deprecated_sympy():
        (fr, fr_star) = KM.kanes_equations(FL, BL)

    # Test generalized form equations
    linearizer = KM.to_linearizer()
    assert linearizer.f_c == f_c
    assert linearizer.f_v == f_v
    assert linearizer.f_a == f_v.diff(t)
    sol = solve(linearizer.f_0 + linearizer.f_1, qd)
    for qi in qd:
        assert sol[qi] == qdots[qi]
    assert simplify(linearizer.f_2 + linearizer.f_3 - fr - fr_star) == Matrix(
        [0, 0, 0])

    # Perform the linearization
    # Precomputed operating point
    q_op = {q6: -r * cos(q2)}
    u_op = {
        u1: 0,
        u2: sin(q2) * q1d + q3d,
        u3: cos(q2) * q1d,
        u4: -r * (sin(q2) * q1d + q3d) * cos(q3),
        u5: 0,
        u6: -r * (sin(q2) * q1d + q3d) * sin(q3)
    }
    qd_op = {
        q2d: 0,
        q4d: -r * (sin(q2) * q1d + q3d) * cos(q1),
        q5d: -r * (sin(q2) * q1d + q3d) * sin(q1),
        q6d: 0
    }
    ud_op = {
        u1d:
        4 * g * sin(q2) / (5 * r) + sin(2 * q2) * q1d**2 / 2 +
        6 * cos(q2) * q1d * q3d / 5,
        u2d:
        0,
        u3d:
        0,
        u4d:
        r * (sin(q2) * sin(q3) * q1d * q3d + sin(q3) * q3d**2),
        u5d:
        r * (4 * g * sin(q2) /
             (5 * r) + sin(2 * q2) * q1d**2 / 2 + 6 * cos(q2) * q1d * q3d / 5),
        u6d:
        -r * (sin(q2) * cos(q3) * q1d * q3d + cos(q3) * q3d**2)
    }

    A, B = linearizer.linearize(op_point=[q_op, u_op, qd_op, ud_op],
                                A_and_B=True,
                                simplify=True)

    upright_nominal = {q1d: 0, q2: 0, m: 1, r: 1, g: 1}

    # Precomputed solution
    A_sol = Matrix([[0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1, 0, 0],
                    [0, 0, 0, 0, 0, 0, 1, 0],
                    [sin(q1) * q3d, 0, 0, 0, 0, -sin(q1), -cos(q1), 0],
                    [-cos(q1) * q3d, 0, 0, 0, 0,
                     cos(q1), -sin(q1), 0],
                    [0, S(4) / 5, 0, 0, 0, 0, 0, 6 * q3d / 5],
                    [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -2 * q3d, 0, 0]])
    B_sol = Matrix([])

    # Check that linearization is correct
    assert A.subs(upright_nominal) == A_sol
    assert B.subs(upright_nominal) == B_sol

    # Check eigenvalues at critical speed are all zero:
    assert A.subs(upright_nominal).subs(q3d, 1 / sqrt(3)).eigenvals() == {0: 8}
Beispiel #9
0
def test_rolling_disc():
    # Rolling Disc Example
    # Here the rolling disc is formed from the contact point up, removing the
    # need to introduce generalized speeds. Only 3 configuration and three
    # speed variables are need to describe this system, along with the disc's
    # mass and radius, and the local gravity (note that mass will drop out).
    q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
    q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
    r, m, g = symbols('r m g')

    # The kinematics are formed by a series of simple rotations. Each simple
    # rotation creates a new frame, and the next rotation is defined by the new
    # frame's basis vectors. This example uses a 3-1-2 series of rotations, or
    # Z, X, Y series of rotations. Angular velocity for this is defined using
    # the second frame's basis (the lean frame).
    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    L = Y.orientnew('L', 'Axis', [q2, Y.x])
    R = L.orientnew('R', 'Axis', [q3, L.y])
    w_R_N_qd = R.ang_vel_in(N)
    R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)

    # This is the translational kinematics. We create a point with no velocity
    # in N; this is the contact point between the disc and ground. Next we form
    # the position vector from the contact point to the disc's center of mass.
    # Finally we form the velocity and acceleration of the disc.
    C = Point('C')
    C.set_vel(N, 0)
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)

    # This is a simple way to form the inertia dyadic.
    I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)

    # Kinematic differential equations; how the generalized coordinate time
    # derivatives relate to generalized speeds.
    kd = [dot(R.ang_vel_in(N) - w_R_N_qd, uv) for uv in L]

    # Creation of the force list; it is the gravitational force at the mass
    # center of the disc. Then we create the disc by assigning a Point to the
    # center of mass attribute, a ReferenceFrame to the frame attribute, and mass
    # and inertia. Then we form the body list.
    ForceList = [(Dmc, -m * g * Y.z)]
    BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
    BodyList = [BodyD]

    # Finally we form the equations of motion, using the same steps we did
    # before. Specify inertial frame, supply generalized speeds, supply
    # kinematic differential equation dictionary, compute Fr from the force
    # list and Fr* from the body list, compute the mass matrix and forcing
    # terms, then solve for the u dots (time derivatives of the generalized
    # speeds).
    KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        KM.kanes_equations(ForceList, BodyList)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    kdd = KM.kindiffdict()
    rhs = rhs.subs(kdd)
    rhs.simplify()
    assert rhs.expand() == Matrix([
        (6 * u2 * u3 * r - u3**2 * r * tan(q2) + 4 * g * sin(q2)) / (5 * r),
        -2 * u1 * u3 / 3, u1 * (-2 * u2 + u3 * tan(q2))
    ]).expand()
    assert simplify(KM.rhs() -
                    KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(
                        6, 1)

    # This code tests our output vs. benchmark values. When r=g=m=1, the
    # critical speed (where all eigenvalues of the linearized equations are 0)
    # is 1 / sqrt(3) for the upright case.
    A = KM.linearize(A_and_B=True)[0]
    A_upright = A.subs({
        r: 1,
        g: 1,
        m: 1
    }).subs({
        q1: 0,
        q2: 0,
        q3: 0,
        u1: 0,
        u3: 0
    })
    import sympy
    assert sympy.sympify(A_upright.subs({u2: 1 / sqrt(3)})).eigenvals() == {
        S(0): 6
    }