Beispiel #1
0
 def __new__(cls, expr1, expr2):
     expr1 = sympify(expr1)
     expr2 = sympify(expr2)
     if default_sort_key(expr1) > default_sort_key(expr2):
         return -Cross(expr2, expr1)
     obj = Expr.__new__(cls, expr1, expr2)
     obj._expr1 = expr1
     obj._expr2 = expr2
     return obj
Beispiel #2
0
 def __new__(cls, expr1, expr2):
     expr1 = sympify(expr1)
     expr2 = sympify(expr2)
     if default_sort_key(expr1) > default_sort_key(expr2):
         return -Cross(expr2, expr1)
     obj = Expr.__new__(cls, expr1, expr2)
     obj._expr1 = expr1
     obj._expr2 = expr2
     return obj
Beispiel #3
0
    def sort_key(self, order=None):
        """Return a canonical key that can be used for sorting.

        Ordering is based on the size and sorted elements of the partition
        and ties are broken with the rank.

        Examples
        ========

        >>> from sympy.utilities.iterables import default_sort_key
        >>> from sympy.combinatorics.partitions import Partition
        >>> from sympy.abc import x
        >>> a = Partition([1, 2])
        >>> b = Partition([3, 4])
        >>> c = Partition([1, x])
        >>> d = Partition(list(range(4)))
        >>> l = [d, b, a + 1, a, c]
        >>> l.sort(key=default_sort_key); l
        [{{1, 2}}, {{1}, {2}}, {{1, x}}, {{3, 4}}, {{0, 1, 2, 3}}]
        """
        if order is None:
            members = self.members
        else:
            members = tuple(sorted(self.members,
                             key=lambda w: default_sort_key(w, order)))
        return list(map(default_sort_key, (self.size, members, self.rank)))
Beispiel #4
0
    def sort_key(self, order=None):
        """Return a canonical key that can be used for sorting.

        Ordering is based on the size and sorted elements of the partition
        and ties are broken with the rank.

        Examples
        ========

        >>> from sympy.utilities.iterables import default_sort_key
        >>> from sympy.combinatorics.partitions import Partition
        >>> from sympy.abc import x
        >>> a = Partition([1, 2])
        >>> b = Partition([3, 4])
        >>> c = Partition([1, x])
        >>> d = Partition(list(range(4)))
        >>> l = [d, b, a + 1, a, c]
        >>> l.sort(key=default_sort_key); l
        [Partition(FiniteSet(1, 2)), Partition(FiniteSet(1), FiniteSet(2)), Partition(FiniteSet(1, x)), Partition(FiniteSet(3, 4)), Partition(FiniteSet(0, 1, 2, 3))]
        """
        if order is None:
            members = self.members
        else:
            members = tuple(
                sorted(self.members, key=lambda w: default_sort_key(w, order)))
        return tuple(map(default_sort_key, (self.size, members, self.rank)))
Beispiel #5
0
    def sort_key(self, order=None):
        """Return a canonical key that can be used for sorting.

        Ordering is based on the size and sorted elements of the partition
        and ties are broken with the rank.

        Examples
        ========

        >>> from sympy.utilities.iterables import default_sort_key
        >>> from sympy.combinatorics.partitions import Partition
        >>> from sympy.abc import x
        >>> a = Partition([[1, 2]])
        >>> b = Partition([[3, 4]])
        >>> c = Partition([[1, x]])
        >>> d = Partition([range(4)])
        >>> l = [d, b, a + 1, a, c]
        >>> l.sort(key=default_sort_key); l
        [{{1, 2}}, {{1}, {2}}, {{1, x}}, {{3, 4}}, {{0, 1, 2, 3}}]
        """
        if order is None:
            members = self.members
        else:
            members = tuple(
                sorted(self.members, key=lambda w: default_sort_key(w, order)))
        return self.size, members, self.rank
Beispiel #6
0
def _eigenvects_DOM(M, **kwargs):
    DOM = DomainMatrix.from_Matrix(M, field=True, extension=True)
    if DOM.domain != EX:
        rational, algebraic = dom_eigenvects(DOM)
        eigenvects = dom_eigenvects_to_sympy(rational, algebraic, M.__class__,
                                             **kwargs)
        eigenvects = sorted(eigenvects, key=lambda x: default_sort_key(x[0]))

        return eigenvects
    return None
Beispiel #7
0
 def as_expr_variables(self, order_symbols):
     if order_symbols is None:
         order_symbols = self.args[1:]
     else:
         if not all(o[1] == order_symbols[0][1] for o in order_symbols) and \
            not all(p == self.point[0] for p in self.point):
             raise NotImplementedError('Order at points other than 0 '
                 'or oo not supported, got %s as a point.' % point)
         if order_symbols[0][1] != self.point[0]:
             raise NotImplementedError(
                     "Multiplying Order at different points is not supported.")
         order_symbols = dict(order_symbols)
         for s, p in dict(self.args[1:]).items():
             if s not in order_symbols.keys():
                 order_symbols[s] = p
         order_symbols = sorted(order_symbols.items(), key=lambda x: default_sort_key(x[0]))
     return self.expr, tuple(order_symbols)
Beispiel #8
0
    def sort_args_by_name(self):
        """
        Sort arguments in the tensor product so that their order is lexicographical.

        Examples
        ========

        >>> from sympy import MatrixSymbol, MatrixExpr, Sum, Symbol
        >>> from sympy.abc import i, j, k, l, N
        >>> from sympy.codegen.array_utils import CodegenArrayContraction
        >>> A = MatrixSymbol("A", N, N)
        >>> B = MatrixSymbol("B", N, N)
        >>> C = MatrixSymbol("C", N, N)
        >>> D = MatrixSymbol("D", N, N)

        >>> cg = CodegenArrayContraction.from_MatMul(C*D*A*B)
        >>> cg
        CodegenArrayContraction(CodegenArrayTensorProduct(C, D, A, B), (1, 2), (3, 4), (5, 6))
        >>> cg.sort_args_by_name()
        CodegenArrayContraction(CodegenArrayTensorProduct(A, B, C, D), (0, 7), (1, 2), (5, 6))
        """
        expr = self.expr
        if not isinstance(expr, CodegenArrayTensorProduct):
            return self
        args = expr.args
        sorted_data = sorted(enumerate(args),
                             key=lambda x: default_sort_key(x[1]))
        pos_sorted, args_sorted = zip(*sorted_data)
        reordering_map = {i: pos_sorted.index(i) for i, arg in enumerate(args)}
        contraction_tuples = self._get_contraction_tuples()
        contraction_tuples = [[(reordering_map[j], k) for j, k in i]
                              for i in contraction_tuples]
        c_tp = CodegenArrayTensorProduct(*args_sorted)
        new_contr_indices = self._contraction_tuples_to_contraction_indices(
            c_tp, contraction_tuples)
        return CodegenArrayContraction(c_tp, *new_contr_indices)
Beispiel #9
0
    def sort_args_by_name(self):
        """
        Sort arguments in the tensor product so that their order is lexicographical.

        Examples
        ========

        >>> from sympy import MatrixSymbol, MatrixExpr, Sum, Symbol
        >>> from sympy.abc import i, j, k, l, N
        >>> from sympy.codegen.array_utils import CodegenArrayContraction
        >>> A = MatrixSymbol("A", N, N)
        >>> B = MatrixSymbol("B", N, N)
        >>> C = MatrixSymbol("C", N, N)
        >>> D = MatrixSymbol("D", N, N)

        >>> cg = CodegenArrayContraction.from_MatMul(C*D*A*B)
        >>> cg
        CodegenArrayContraction(CodegenArrayTensorProduct(C, D, A, B), (1, 2), (3, 4), (5, 6))
        >>> cg.sort_args_by_name()
        CodegenArrayContraction(CodegenArrayTensorProduct(A, B, C, D), (0, 7), (1, 2), (5, 6))
        """
        expr = self.expr
        if not isinstance(expr, CodegenArrayTensorProduct):
            return self
        args = expr.args
        sorted_data = sorted(enumerate(args), key=lambda x: default_sort_key(x[1]))
        pos_sorted, args_sorted = zip(*sorted_data)
        reordering_map = {i: pos_sorted.index(i) for i, arg in enumerate(args)}
        contraction_tuples = self._get_contraction_tuples()
        contraction_tuples = [[(reordering_map[j], k) for j, k in i] for i in contraction_tuples]
        c_tp = CodegenArrayTensorProduct(*args_sorted)
        new_contr_indices = self._contraction_tuples_to_contraction_indices(
                c_tp,
                contraction_tuples
        )
        return CodegenArrayContraction(c_tp, *new_contr_indices)
Beispiel #10
0
 def _sort_key(arg):
     return default_sort_key(arg[0].as_independent(x)[1])
Beispiel #11
0
 def _sorted_args(self):
     from sympy.core.compatibility import default_sort_key
     return tuple(sorted(self.args, key=lambda w: default_sort_key(w)))
Beispiel #12
0
 def _sort_key(arg):
     return default_sort_key(arg[0].as_independent(x)[1])
Beispiel #13
0
 def _sorted_args(self):
     from sympy.core.compatibility import default_sort_key
     return sorted(self.args, key=lambda w: default_sort_key(w))
Beispiel #14
0
    def set_equivalence_relationship(self, other):
        plausibles_set, is_equivalent = self.plausibles_set()
        if len(plausibles_set) == 1:
            if is_equivalent:
                eq, *_ = plausibles_set
                if isinstance(other, (list, tuple)):
                    is_equivalent = True
                    plausibles_set = set()
                    for other in other:
                        _plausibles_set, _is_equivalent = other.plausibles_set(
                        )
                        plausibles_set |= _plausibles_set
                        is_equivalent &= _is_equivalent
                else:
                    plausibles_set, is_equivalent = other.plausibles_set()

                assert eq not in plausibles_set, 'cyclic proof detected'

                equivalent = [*plausibles_set]
                if len(equivalent) == 1:
                    equivalent, *_ = equivalent
                elif not equivalent:
                    return

                if is_equivalent:
                    from sympy.core.compatibility import default_sort_key
                    if isinstance(equivalent, (list, tuple)):
                        p, *q = sorted(
                            (eq, *equivalent),
                            key=lambda inf: default_sort_key(inf.cond))
                    else:
                        p, q = sorted(
                            (eq, equivalent),
                            key=lambda inf: default_sort_key(inf.cond))
                    p.equivalent = q
                else:
                    del eq._assumptions['plausible']
                    eq.given = equivalent
                return True
            else:
                eq, *_ = plausibles_set
                if isinstance(other, list):
                    plausibles_set = set()
                    for other in other:
                        _plausibles_set, is_equivalent = other.plausibles_set()
                        plausibles_set |= _plausibles_set
                        if not is_equivalent:
                            return
                else:
                    plausibles_set, is_equivalent = other.plausibles_set()
                    if not is_equivalent:
                        return

                assert eq not in plausibles_set, 'cyclic proof detected'

                equivalent = [*plausibles_set]
                if len(equivalent) == 1:
                    equivalent, *_ = equivalent
                elif not equivalent:
                    return

                del eq._assumptions['plausible']
                eq.given = equivalent
                return True
Beispiel #15
0
 def recurse_expr(expr, index_ranges={}):
     if expr.is_Mul:
         nonmatargs = []
         matargs = []
         pos_arg = []
         pos_ind = []
         dlinks = {}
         link_ind = []
         counter = 0
         for arg in expr.args:
             arg_symbol, arg_indices = recurse_expr(arg, index_ranges)
             if arg_indices is None:
                 nonmatargs.append(arg_symbol)
                 continue
             i1, i2 = arg_indices
             pos_arg.append(arg_symbol)
             pos_ind.append(i1)
             pos_ind.append(i2)
             link_ind.extend([None, None])
             if i1 in dlinks:
                 other_i1 = dlinks[i1]
                 link_ind[2*counter] = other_i1
                 link_ind[other_i1] = 2*counter
             if i2 in dlinks:
                 other_i2 = dlinks[i2]
                 link_ind[2*counter + 1] = other_i2
                 link_ind[other_i2] = 2*counter + 1
             dlinks[i1] = 2*counter
             dlinks[i2] = 2*counter + 1
             counter += 1
         cur_ind_pos = link_ind.index(None)
         first_index = pos_ind[cur_ind_pos]
         while True:
             d = cur_ind_pos // 2
             r = cur_ind_pos % 2
             if r == 1:
                 matargs.append(transpose(pos_arg[d]))
             else:
                 matargs.append(pos_arg[d])
             next_ind_pos = link_ind[2*d + 1 - r]
             if next_ind_pos is None:
                 last_index = pos_ind[2*d + 1 - r]
                 break
             cur_ind_pos = next_ind_pos
         return Mul.fromiter(nonmatargs)*MatMul.fromiter(matargs), (first_index, last_index)
     elif expr.is_Add:
         res = [recurse_expr(i) for i in expr.args]
         res = [
             ((transpose(i), (j[1], j[0]))
                 if default_sort_key(j[0]) > default_sort_key(j[1])
             else (i, j))
             for (i, j) in res
         ]
         addends, last_indices = zip(*res)
         last_indices = list(set(last_indices))
         if len(last_indices) > 1:
             print(last_indices)
             raise ValueError("incompatible summation")
         return MatAdd.fromiter(addends), last_indices[0]
     elif isinstance(expr, KroneckerDelta):
         i1, i2 = expr.args
         return S.One, (i1, i2)
     elif isinstance(expr, MatrixElement):
         matrix_symbol, i1, i2 = expr.args
         if i1 in index_ranges:
             r1, r2 = index_ranges[i1]
             if r1 != 0 or matrix_symbol.shape[0] != r2+1:
                 raise ValueError("index range mismatch: {0} vs. (0, {1})".format(
                     (r1, r2), matrix_symbol.shape[0]))
         if i2 in index_ranges:
             r1, r2 = index_ranges[i2]
             if r1 != 0 or matrix_symbol.shape[1] != r2+1:
                 raise ValueError("index range mismatch: {0} vs. (0, {1})".format(
                     (r1, r2), matrix_symbol.shape[1]))
         if (i1 == i2) and (i1 in index_ranges):
             return trace(matrix_symbol), None
         return matrix_symbol, (i1, i2)
     elif isinstance(expr, Sum):
         return recurse_expr(
             expr.args[0],
             index_ranges={i[0]: i[1:] for i in expr.args[1:]}
         )
     else:
         return expr, None